Патенты автора Лифанов Николай Дмитриевич (RU)

Изобретение относится к электронной технике и предназначено для использования в приборах СВЧ М-типа, в частности в импульсных магнетронах с безнакальным запуском сантиметрового, миллиметрового и субмиллиметрового диапазонов длин волн в широком диапазоне генерируемой импульсной мощности. Технический результат - повышение стабильности, надежности и срока службы магнетронов. Магнетрон содержит узел катода с трехмодульным активным телом. Первым модулем является вторично-электронный эмиттер, выполненный в виде цилиндрической втулки протяженностью 0,5-2,5 мм из агломерированного прессованного оксидно-никелевого материала; иридий-лантанового, иридий-цериевого и ряда других эмиссионно-активных катодных материалов, отличающихся высокой механической прочностью, стабильными вторично-эмиссионными свойствами, устойчивыми к ионной и электронной бомбардировкам. Вторым модулем является автоэлектронный эмиттер, выполненный из танталовой фольги толщиной 4-10 мкм, на рабочей поверхности которого, в результате специального активирования узла в электрическом поле во время откачки и тренировки прибора в динамическом режиме, формируются вискеры из палладия, покрытые эмиссионно-активными соединениями, снижающими работу выхода материала автоэлектронного эмиттера. Третьим модулем является активатор автоэлектронного эмиттера, выполненный в виде шайбы толщиной 0,1-0,3 мм из палладия или палладийсодержащего материала, например, из пластины сплава палладия с барием (ПдБ-2) или изготовленного методом порошковой технологии из смеси порошков палладия и фазы Pd5Ba. Два активатора, симметрично размещенные по обе стороны автоэлектронного эмиттера, образуют в совокупности с автоэлектронным эмиттером автоэмиссионный блок. 6 з.п. ф-лы, 5 ил.

Изобретение относится к области электровакуумной техники, в частности к ускоренному переводу адсорбционных газовых слоев в свободный газ с помощью тепловых и механических средств, а именно к откачке газа из объема электровакуумного прибора (ЭВП). Технический результат - уменьшение длительности откачки и энергетических затрат на откачку. В способе откачки ЭВП, включающем откачку воздуха из объема корпуса ЭВП, в который помещен катод, с одновременным приложением к корпусу ультразвуковых колебаний, корпус нагревают в условиях прохождения ультразвуковых колебаний при частоте максимального прохождения ультразвуковой волны через ЭВП. Нагревание корпуса ЭВП при частоте максимального прохождения ультразвуковых колебаний создает не известный ранее эффект ускоренного разрыва адсорбционных связей молекул воздуха с поверхностью материала, приводящий к увеличению десорбционных потоков, и является физической причиной уменьшения длительности откачки. 2 ил.

Изобретение относится к электронной технике и предназначено для использования в мощных и сверхмощных магнетронах миллиметрового и субмиллиметрового диапазона длин волн. Технический результат - повышение эффективности передачи и рассеивания тепла. В магнетроне, состоящем из анодного блока и коаксиально размещенного внутри него катода, находящегося в пространстве взаимодействия электромагнитных полей, на корпус анодного блока посажен коаксиально с ним магнитопровод, а на него посажен коаксиально радиатор охлаждения. Все три элемента закреплены цилиндрическими теплопроводящими стержнями. Один конец каждого стержня закреплен в корпусе анода, другой пропущен через отверстие магнитопровода и закреплен в радиаторе охлаждения, охлаждаемого воздушным потоком. В другом варианте магнетрона, состоящего из анодного блока и коаксиально размещенного внутри него катода, находящегося в пространстве взаимодействия электромагнитных полей, анодный блок с радиатором охлаждения размещен внутри внешнего магнитопровода цилиндрической конструкции, в которой предусмотрены входное и выходное окна для охлаждающего воздушного потока, проходящего сквозь радиатор охлаждения. 2 н.п. ф-лы, 2 ил.

Изобретение относится к электронной технике и предназначено для использования в приборах СВЧ магнетронного типа (М-типа). Технический результат - повышение надежности и долговечности работы. Магнетрон содержит цилиндрический анод и коаксиально размещенный внутри него катодный узел, состоящий из вторично-электронного эмиттера и размещенного хотя бы на одном концевом экране запускающего катода, состоящего из комбинации шайб-активаторов, соприкасающихся с одной или с двух сторон с автоэлектронным эмиттером, рабочая кромка которого обращена к аноду. Автоэлектронные катоды изготавливаются в виде шайб из тантала или специальных сплавов тугоплавких металлов толщиной от нескольких микрон до нескольких десятков микрон. Активаторы, содержащие эмиссионно-активный материал, являются источниками активных металлов или соединений, которые адсорбируются на поверхности автоэлектронных эмиттеров и тем самым обеспечивают необходимый ток автоэлектронной эмиссии. Задачей предлагаемого изобретения является создание мощных и сверхмощных магнетронов сантиметрового, миллиметрового и субмиллиметрового диапазона длин волн имеющими мгновенный запуск в режим генерации не более чем за 0,5 секунды, а также высокую надежность, стабильность и долговечность. 3 з.п. ф-лы, 6 ил.

Изобретение относится к электронной технике и предназначено для использования в мощных и сверхмощных магнетронах сантиметрового, миллиметрового и субмиллиметрового диапазона длин волн. Технический результат - повышение стабильности возбуждения магнетрона, надежности и долговечности его работы. Результат достигается путем конструктивного разделения катодного узла магнетрона на две функциональные части: запуск магнетрона осуществляется электронной эмиссией (термоэлектронной или полевой) с концевых экранов, а рабочий режим магнетрона обеспечивается основным вторично-эмиссионным катодом, находящимся в пространстве взаимодействия электромагнитных полей. Концевые экраны конструктивно изготавливаются из набора шайб, одна из которых, являющаяся запускающим эмиттером, изготовлена из эмиссионно-активного материала (окисей или сплавов). Запускающий эмиттер размещается между двумя шайбами из тугоплавкого металла, одна из которых собственно экранирует электронный поток в пространстве взаимодействия магнетрона, а вторая отделяет запускающий эмиттер от вторично-эмиссионного основного катода, препятствуя тем самым взаимодействию компонент, входящих в их состав. В магнетроне с мгновенным запуском запускающий эмиттер состоит из комбинации автоэлектронных катодов и активаторов. Активаторы, изготовленные из активных металлов или соединений, являются источниками активирующих веществ, которые, адсорбируясь на поверхности автоэлектронных катодов, увеличивают их эмиссионную способность. Эмиссионно-активные материалы в своем составе содержат окиси бария, кальция, иттрия, тория, лантана или сплавы платины или палладия с барием или иридия с лантаном или церием, осмия с лантаном и др. 2 з.п. ф-лы, 10 ил.

Изобретение относится к электронной технике и предназначено для использования в магнетронах с безнакальным запуском сантиметрового, миллиметрового и субмиллиметрового диапазонов длин волн. Технический результат - повышение стабильности возбуждения магнетрона, надежности и долговечности его работы. Магнетрон с безнакальным запуском состоит из чередующихся автоэлектронных катодов (АЭК), изготовленных в виде колец из фольги тантала толщиной ~4 мкм и вторично-эмиссионных прессованных палладий-бариевых эмиттеров с содержанием бария в количестве 11-25 вес.% и открытой пористостью 2-27%. Формирование тока автоэлектронной эмиссии, наряду с эмиссией с кромки АЭК, в основном обусловлено потоком авто-электронов с остриев нитевидных кристаллов длиной ~ 10-100 нм и размерами в поперечном сечении ~5-20 нм, образующихся на торцовой поверхности АЭК при определенных условиях. 2 з.п. ф-лы, 7 ил.

Изобретение относится к электронной технике и может быть использовано в приборах СВЧ М-типа, в частности в магнетронах с безнакальным катодом

 


Наверх