Патенты автора Федоров Евгений Николаевич (RU)

Изобретение относится к гальваностегии, в частности к нанесению защитных никелевых покрытий на изделия из циркония и сплавов на его основе, и может найти применение в области атомной энергии при производстве уран-циркониевых твэлов при подготовке поверхности перед гальваническим никелированием. Способ подготовки поверхности изделий из сплавов на основе циркония перед гальваническим никелированием включает воздействие на на поверхность изделия сканирующим потоком частиц никеля размером 50-250 мкм, разгоняемых потоком сжатого воздуха до образования на обрабатываемой поверхности равномерного по толщине и сплошности никелевого подслоя толщиной 1-2 мкм при продолжительности воздействия потока частиц никеля 15-25 с/см2. Скорость потока частиц никеля определяют по выражению: где ν - скорость частиц никеля, м/с, d - плотность никеля, кг/м3, L - длина разгона частиц до скорости ν, м, R - усредненный радиус частиц никеля, м, Ро - давление потока сжатого воздуха, Па. Получают равномерное покрытие, обладающее высокой адгезией. 5 з.п. ф-лы, 3 ил., 1 табл.

Изобретение относится к способу изготовления мишеней для наработки изотопа 99Мо. Способ изготовления мишени для наработки изотопа 99Мо включает изготовление сердечника на основе фольги, который формируют путем послойной укладки биметаллической фольги или ее навивки на основу из циркония или его сплавов. Фольгу получают следующим образом: металлический уран, закаленный из β-фазы, заключают в герметичную оболочку из циркония или его сплавов, осуществляют горячее выдавливание полученной биметаллической заготовки через фильеру и многократно прокатывают до получения биметаллической фольги, по существу представляющей собой фольгу из металлического урана, размещенную в герметичной оболочке из циркония или его сплавов. Полученный сердечник заключают во внешнюю оболочку из циркония или его сплавов и производят обжатие сборной заготовки до обеспечения диффузионной связи между всеми слоями мишени. Техническим результатом является обеспечение высокой радиационной стабильности мишеней за счет существенно более низкого распухания металлического урана и выход количества изотопов 99Мо не хуже, чем у мишеней с сердечником, полностью изготовленным из металлического низкообогащенного урана. 8 з.п. ф-лы, 3 ил.

Изобретение относится к способу изготовления мишеней для наработки изотопа 99Мо. Способ изготовления мишени для наработки изотопа 99Мо включает изготовление сердечника на основе фольги, который формируют путем послойной укладки биметаллической фольги или ее навивки на основу из циркония или его сплавов. Фольгу получают следующим образом: металлический уран, закаленный из β-фазы, заключают в герметичную оболочку из циркония или его сплавов, осуществляют горячее выдавливание полученной биметаллической заготовки через фильеру и многократно прокатывают до получения биметаллической фольги, по существу представляющей собой фольгу из металлического урана, размещенную в герметичной оболочке из циркония или его сплавов. Полученный сердечник заключают во внешнюю оболочку из циркония или его сплавов и производят обжатие сборной заготовки до обеспечения диффузионной связи между всеми слоями мишени. Техническим результатом является обеспечение высокой радиационной стабильности мишеней за счет существенно более низкого распухания металлического урана и выход количества изотопов 99Мо не хуже, чем у мишеней с сердечником, полностью изготовленным из металлического низкообогащенного урана. 8 з.п. ф-лы, 3 ил.

Изобретение относится к способу изготовления мишеней для наработки изотопа 99Мо. Способ изготовления мишени для наработки изотопа 99Мо включает изготовление сердечника на основе фольги, который формируют путем послойной укладки биметаллической фольги или ее навивки на основу из циркония или его сплавов. Фольгу получают следующим образом: металлический уран, закаленный из β-фазы, заключают в герметичную оболочку из циркония или его сплавов, осуществляют горячее выдавливание полученной биметаллической заготовки через фильеру и многократно прокатывают до получения биметаллической фольги, по существу представляющей собой фольгу из металлического урана, размещенную в герметичной оболочке из циркония или его сплавов. Полученный сердечник заключают во внешнюю оболочку из циркония или его сплавов и производят обжатие сборной заготовки до обеспечения диффузионной связи между всеми слоями мишени. Техническим результатом является обеспечение высокой радиационной стабильности мишеней за счет существенно более низкого распухания металлического урана и выход количества изотопов 99Мо не хуже, чем у мишеней с сердечником, полностью изготовленным из металлического низкообогащенного урана. 8 з.п. ф-лы, 3 ил.

Изобретение относится к средствам прямого преобразования энергии радиоактивного распада в электрическую и может быть использовано для питания микроэлектронной аппаратуры. Гибкий бета-вольтаический элемент содержит источник бета-излучения выполнен в виде содержащей радиоактивный изотоп фольги, который окружен, по меньшей мере, одним прилегающим к нему полупроводниковым преобразователем. Преобразователь выполнен в виде фольги из вентильного металла (например, Ni, Nb, Zr, V), на поверхности которой, обращенной к источнику излучения, сформирован слой полупроводникового оксида упомянутого вентильного металла, пропускающий электрический ток только в одном направлении, снабженный, по меньшей мере, одним электрическим контактом, нанесенным на этот слой. Способность слоя полупроводникового оксида вентильного металла пропускать ток только в одном направлении обеспечивается либо тем, что электрический контакт, нанесенный на этот слой, выполнен в виде сплошного металлического покрытия, образующего с упомянутым полупроводниковым оксидом барьер Шоттки, либо тем, что в упомянутом слое сформирована выпрямляющая гетероструктура. Техническим результатом является возможность оптимизации весогабаритных характеристик бета-вольтаического элемента. 3 з.п. ф-лы, 2 ил.

Изобретение относится к получению мелкодисперсных металлических порошков. Способ включает механическое диспергирование металлического материала с получением полидисперсного металлического порошка, перемешивание смеси полидисперсного металлического порошка с химически инертной к нему жидкой средой до образования суспензии. При перемешивании в суспензию вводят алмазный порошок. Воздействуют на суспензию ультразвуковыми колебаниями в режиме кавитации. Удаляют из суспензии алмазный порошок. Далее выделяют мелкодисперсную фракцию металлического порошка из суспензии. Обеспечивается повышение доли выхода мелкодисперсной фракции порошка, а также диспергирование немагнитопроводящих порошков и пластичных порошков, склонных к сегрегации. 4 з.п. ф-лы, 6 ил., 1 пр.

Изобретение относится к области физико-химического анализа, а именно к измерению удельной поверхности (УП) дисперсных, пористых и компактных материалов. Предварительно перед сорбцией камеру с источником, соединенную с камерой с исследуемым материалом, продувают инертным газом и вакуумируют. Далее для обеспечения сорбции температуру камеры с источником поддерживают на уровне 500÷550°C, температуру камеры с исследуемым материалом поддерживают на 20÷30°C выше температуры камеры с источником. Затем обе камеры повторно продувают инертным газом и вакуумируют. А далее проводят десорбцию серебра селективным растворителем при комнатной температуре с дальнейшим анализом количества серебра в растворе спектральным методом. При этом, например, в качестве селективного растворителя можно использовать одномолярную азотную кислоту. А в качестве спектрального метода используют метод индуктивно-связанной плазмы. Процесс сорбции проводят в течение 15-30 минут. Задача и достигаемый при использовании изобретения технический результат - повышение точности измерения УП дисперсных, пористых и компактных материалов с одновременным расширением диапазона измерения УП от 10-3 м2/г до 103 м2/г. 3 з.п. ф-лы, 3 ил.

Изобретение относится к области поверхностной обработки материалов и может быть использовано для повышения коррозионной стойкости сталей в окислительных (кислород, воздух, водяной пар) средах. Способ включает нанесение на поверхность защитной пленки при повышенной температуре, при этом перед нанесением защитной пленки с поверхности при комнатной температуре в инертной среде полностью удаляют исходную оксидную пленку путем обработки стальной поверхности наждачной шкуркой с последующей полировкой, а далее на поверхность наносят защитную пленку оксида хрома толщиной 0,8÷1,0 мкм путем окисления стальной поверхности при парциальном давлении кислорода 10-8÷10-10 Па и температуре 830÷930°С. Изобретение позволяет повысить коррозионную стойкость защитных пленок под действием динамических нагрузок потока теплоносителя в энергетических установках. 1 табл., 1 пр.

Изобретение относится к области прямого преобразования химической энергии в электрическую и может быть использовано в источниках тока, принцип действия которых основан на электронных процессах, протекающих в полупроводниковых катализаторах
Мы будем признательны, если вы окажете нашему проекту финансовую поддержку!

 


Наверх