Патенты автора Сапрыкин Леонид Григорьевич (RU)

Изобретение относится к способам закалки элементов конического резьбового соединения источником лазерного излучения путем вращения элемента с одновременным перемещением оптической оси источника лазерного излучения вдоль профиля резьбы на величину шага резьбы за один оборот элемента. Способ включает: перемещение источника лазерного излучения производят параллельно образующей 11 конуса резьбы, увеличивая или уменьшая частоту вращения элемента пропорционально изменению текущего диаметра конуса резьбы соответственно относительно диаметра его большого 12, 13 или меньшего 14, 15 основания. Способ включает: перемещение источника лазерного излучения производят параллельно образующей 11 конуса резьбы, увеличивая или уменьшая плотность мощности лазерного излучения пропорционально изменению текущего диаметра конуса резьбы соответственно относительно диаметра его большого 12, 13 или меньшего 14, 15 основания. Технический результат заключается в обеспечении постоянного размера пятна нагрева лазерного луча вследствие постоянства расстояния между обрабатываемой конической поверхностью упрочняемого слоя и фокусирующей линзой, что ведет к постоянству плотности мощности излучения для обеспечения сохранения геометрии резьбового соединения и увеличению его надежности и долговечности. 2 н.п. ф-лы, 4 ил., 1 табл.

Изобретение относится к послойному изготовлению изделий из порошка, например, никелевых жаропрочных сплавов, сплавов на основе кобальта, драгоценных металлов. Устройство включает камеру построения с системой поддержания в камере рабочей среды, платформу построения со стойкой и с приводом вертикального перемещения, корзину для размещения платформы построения и ее привода, по меньшей мере одно устройство подачи порошка, ракель для разравнивания слоя порошка на платформе построения, размещенный в корзине под платформой построения и сообщенный с системой поддержания в камере рабочей среды контейнер для сбора излишнего порошка и лазерно-оптическое устройство, выполненное с возможностью сплавления слоев порошка по заданной программе трехмерной компьютерной модели изделия. Устройство снабжено скрепленным с верхней внутренней частью корзины экраном, боковая поверхность которого выполнена эквидистантной боковой поверхности платформы построения, и уплотнением, установленным на боковой поверхности экрана между экраном и платформой построения. Согласно способу, на рабочую поверхность платформы построения послойно подают по крайней мере один порошок, разравнивают слой и сплавляют лазерным лучом участки слоя, идентичные участкам на поперечных разрезах предварительно сформированной посредством заданной программы трехмерной компьютерной модели -изделия, при этом в каждом-из слоев на наружной границе, совпадающей в плане с границей платформы построения, выполняют уплотнительную оболочку. Обеспечивается уменьшение количества используемого порошка при одновременной надежности и долговечности работы устройства. 2 н. и 2 з.п. ф-лы, 4 ил.

Изобретение относится к устройству для лазерной наплавки на образец. Устройство содержит головку с лазерно-оптическим устройством (1) и выполненным с каналами (2) корпусом (3), питатель (4) порошка, соединенный трубопроводом (5) с источником (6) транспортного газа, коаксиальное сопло (7), распределитель (8) аэрозольного потока транспортного газа и порошка. Распределитель (8) аэрозольного потока состоит из корпуса (9) с размещенной конической выточкой (10) в виде прямого кругового конуса. В выточке корпуса размещена правильная пирамида (11), ребра (12) которой контактируют с поверхностью выточки, образуя камеры (13). Центратор аэрозольного потока выполнен в виде шайбы (14) с калиброванным отверстием (15) и размещен над пирамидой с возможностью перемещения относительно нее в горизонтальной плоскости. Камеры (13) распределителя соединены через центратор с питателем (5) и через выполненные в пирамиде и корпусе распределителя потока каналы (16) и трубопроводы (17-20), соответствующие каналы (2) корпуса (3) головки с коаксиальным соплом (7). Данное техническое решение позволит улучшить качество наплавки из-за возможности равномерного осаждения порошка из аэрозоля на наплавляемый образец. 5 ил.

Изобретение относится к послойному изготовлению объемного металлического изделия. Способ включает послойную подачу порошка на рабочую поверхность камеры построения и подвижную в вертикальном направлении платформу построения, разравнивание слоя и сплавление лазерным лучом участков слоя на платформе построения, идентичных участкам на поперечных разрезах предварительно сформированной посредством заданной программы трехмерной компьютерной модели изделия, и вакуумное удаление не сплавленного материала в соответствующий порошку контейнер. Перед сплавлением лазерным лучом участков слоя на платформе построения производят опускание платформы построения, удаление не сплавленного материала с рабочей поверхности камеры построения в отдельный контейнер и подъем платформы построения. Обеспечивается уменьшение затрат на восстановление использованного не сплавленного порошка, а также повышение точности геометрических размеров изделия. 2 ил.

Изобретение относится к послойному изготовлению объемного изделия из жаропрочного металлического порошка. Способ включает послойную подачу порошка на рабочую поверхность подвижной в вертикальном направлении платформу построения, разравнивание слоя, сплавление лазерным лучом участков слоя, идентичным участкам на поперечных разрезах предварительно сформированной посредством заданной программы трехмерной компьютерной модели изделия, и вакуумное удаление не сплавленного материала в соответствующий порошку контейнер. После удаления не сплавленного материала в освободившемся пространстве слоя создают буферную зону путем заполнения пространства порошком из легко сплавляемого материала, по сравнению с материалом изделия, с последующим его разравниванием и сплавлением заданного участка буферной зоны. После изготовления изделия материал буферной зоны удаляют. Материал буферной зоны выбирают из ряда, включающего олово, медь, бронзу, алюминий, водорастворимые соли галогенидов щелочных металлов и указанные соли совместно с порошком материала изготавливаемого изделия. Обеспечивается уменьшение расхода порошка и повышение точности геометрических размеров изделия. 2 з.п. ф-лы, 1 табл., 2 ил.

Изобретение относится к деревообрабатывающей промышленности, в частности к устройствам для ручного раскалывания древесины. Устройство для ручного раскалывания древесины включает корпус с верхним ограничительным элементом, стойками и опорой, раскалывающий блок. Раскалывающий блок снабжен по меньшей мере тремя обращенными к ограничительному элементу вертикально ориентированными лезвиями, скрепленными с отклоняющими элементами. В центре раскалывающего блока расположен конический штырь. Каждый из отклоняющих элементов одним концом скреплен с корпусом, а другим - с другими отклоняющими элементами и с коническим штырем. Режущие кромки лезвий расположены под острым углом к продольной оси штыря. Повышается производительность и безопасность процесса раскалывания. 1 з.п. ф-лы, 5 ил.

Изобретение относится к послойному изготовлению объемных изделий из порошка. Устройство содержит камеру построения, платформу построения, выполненную с возможностью вертикального перемещения, порошковый питатель с дозирующим устройством, лазерное устройство для программируемого послойного лазерного сплавления заданной области слоя порошка на платформе построения и устройство для доставки порошка на платформу построения и его разравнивания, размещенное в горизонтальных направляющих, снабженное приводом его перемещения и содержащее контейнер с приемным окном для порошка из порошкового питателя. Устройство для доставки порошка на платформу построения и его разравнивания выполнено с возможностью вертикального регулируемого перемещения относительно горизонтальных направляющих, при этом оно содержит плиту, снабженную гибкими разравнивающими элементами, размещенными в ее нижней части параллельно на одном уровне, и выполненную с окнами, расположенными впереди каждого из разравнивающих элементов и параллельно им. Контейнер для порошка выполнен с каналами для направления порошка к упомянутым окнам. Обеспечивается повышение точности геометрических размеров изготавливаемого изделия. 4 ил.

Изобретение относится к устройству для послойного изготовления объемных изделий и может быть использовано при изготовлении объемных изделий из двух или более разнородных порошковых компонентов. Устройство содержит камеру построения, платформу построения, порошковые питатели, лазерное устройство для программируемого послойного лазерного сплавления заданной области в каждом слое, устройство разравнивания слоя порошка на платформе построения, устройство удаления порошка из слоя. Устройство разравнивания слоя порошка на платформе построения выполнено в виде балки, размещенной в направляющих, с которой соединен разравнивающий элемент. Устройство удаления порошка из слоя выполнено вакуумным со входным щелевым отверстием и скреплено с балкой устройства разравнивания слоя порошка, порошковые питатели выполнены со щелевыми выпускными отверстиями, балка выполнена со щелевым каналом, причем входное щелевое отверстие устройства удаления порошка из слоя, разравнивающий элемент, щелевой канал балки и выпускные отверстия питателей параллельны между собой. Обеспечивается повышение точности геометрических размеров изготавливаемого объемного изделия. 3 ил.

Изобретение относится к послойному изготовлению изделий из нескольких порошков. Способ включает изготовление в камере построения каждого слоя фазами, каждая из которых включает послойную подачу порошка из бункера с дозирующим устройством на технологически заданные участки рабочей поверхности регулируемой платформы построения, которые идентичны участкам на поперечных разрезах предварительно сформированной посредством заданной программы трехмерной компьютерной модели изделия, разравнивание, сплавление порошка и удаление не сплавленного порошка вакуумной системой в соответствующий порошку контейнер. Сплавление материала в каждой из фаз производят в среде газового агента в виде инертного газа, удаление не сплавленного порошка в соответствующий порошку контейнер производят вместе с инертным газом, с последующим отделением инертного газа от порошка и подачей его в камеру построения только при фазе удаления не сплавленного порошка. Обеспечивается изготовление изделий в среде инертного газа с возможностью разделения порошков, не подвергнувшихся сплавлению в каждом из слоев, а также повышение надежности устройства. 2 н.п. ф-лы, 2 ил.

Изобретение относится к области лазерной обработки материалов. Станок содержит раму, консольную балку, установленную на раме с возможностью перемещения посредством привода, и размещенную на консольной балке с возможностью перемещения вдоль нее посредством привода продольного перемещения каретку с лазерным обрабатывающим устройством. При этом привод продольного перемещения выполнен в виде индуктора, закрепленного на консольной балке, и якоря, размещенного на каретке с возможностью выдвижения лазерного обрабатывающего устройства за пределы консольной балки, что позволяет обрабатывать изделия большего размера. Использование изобретения позволяет облегчить конструкцию станка за счет уменьшения длины балки, а также за счет уменьшения изгиба и вибрации балки повысить точность обработки изделия. 4 ил.

Изобретение может быть использовано при изготовлении объемных изделий. Устройство содержит лазерное устройство 13 и камеру 1 построения с системой 4 для поддержания в камере рабочей среды. Платформа 2 построения со стойкой 3 снабжена устройствами 5, 6 соответственно, предназначенными для подачи порошка и разравнивания слоя порошка на платформе построения. Корзина 7 с приводом 8 предназначена для размещения платформы построения. Между корзиной и платформой построения расположен уплотнительный элемент 9. Корзина снабжена размещенной под платформой построения горизонтальной перегородкой 10 с отверстием для стойки платформы построения и размещенным в перегородке элементом 11 герметизации от внешней среды. Корзина, перегородка и платформа построения образуют промежуточную камеру 12, сообщенную с системой 4. Для спекания порошка служит лазерное устройство 13. Изобретение обеспечивает послойное программируемое лазерное спекание изделия 14 посредством лазерного устройства. 3 ил.Из промежуточной камеры попавший порошок извлекается посредством системы 4.Данное техническое решение позволит повысить стабильность работы устройства, увеличить надежность и долговечности устройства

Группа изобретений относится к изготовлению объемных изделий из порошка в виде заполненной оболочки с донной частью. Формируют на опоре донную часть, затем формируют внешнюю оболочку по высоте из групп слоев, причем каждую из групп слоев формируют путем послойной насыпки порошка, его планаризации и послойного лазерного спекания заданной области в плоскости каждого слоя с получением оболочки заданной высоты, после формирования каждой группы слоев внутреннюю полость полученной внешней оболочки заполняют порошком на высоту этой группы слоев и проводят лазерное спекание порошка внутренней полости упомянутой оболочки на всю его глубину. Предложено устройство для послойного изготовления объемного изделия из порошка упомянутым способом. Обеспечивается снижение времени создания изделий. 2 н. и 2 з.п. ф-лы, 3 ил.

Изобретение относится к изготовлению объемных изделий. Устройство включает стойку, платформу построения, размещенную на стойке герметичную камеру построения, устройства поддержания в камере рабочей среды, подачи порошка и планаризации слоя порошка на платформе построения, послойного лазерного спекания и удаления излишнего материала, а также контейнеры соответственно для размещения платформы построения с вертикальным приводом и сбора излишнего порошка. Камера построения выполнена с технологическим люком, размещенным в донной ее части, и снабжена размещенной под камерой построения с возможностью вертикального перемещения крышкой, скрепленной с контейнером платформы построения. Обеспечивается увеличение размера изделия без увеличения размеров камеры построения. 2 з.п. ф-лы, 6 ил.

ФИТОТРОН // 2557572
Изобретение относится к сельскому хозяйству, в частности к климатическим камерам для выращивания растений. Фитотрон содержит рабочую камеру с расположенными в нижней и верхней частях вентиляционными отверстиями, размещенные в рабочей камере температурный датчик, выполненные с вентиляционными пазами и окнами стеллажи для помещения контейнеров с растениями, установленную над контейнерами подсветку, включающую панели со светодиодами, и систему управления подсветкой. Светодиоды размещены группами из светодиодов с различными спектральными диапазонами, например 400-500, 500-600, и 600-700 нм. Фитотрон снабжен воздухоохлаждающей установкой с блоком выключения. Панели изготовлены из теплопроводного материала и выполнены с вентиляционными отверстиями, которые сообщены с воздухоохлаждающей установкой посредством вентиляционных каналов. Температурный датчик размещен в месте расположения контейнеров с растениями и соединен с системой управления воздухоохлаждающей установкой. Температурный датчик размещен в месте расположения контейнеров с растениями и соединен с системой управления воздухоохлаждающей установкой. Такое выполнение позволит стабилизировать температуру в месте расположения контейнеров с растениями в независимости от температуры наружного пространства и интенсивности излучения светодиодов; стабилизировать охлаждение и необходимый температурный режим работы светодиодов и тем самым обеспечить их высокую долговечность. 4 з.п. ф-лы, 3 ил.

Изобретение относится к области машиностроения и может быть использовано для создания высокоточного технологического оборудования. Способ изготовления координатного устройства включает сборку станины из опор и поперечных балок, размещение на опорах параллельных направляющих и установку на направляющих портала, содержащего несущую балку и рабочую головку, при этом каждая из опор имеет выдвижные опорные винты, посредством которых опоры выставляют горизонтально, производят фрезеровку верхней поверхности каждой из опор вдоль ее продольной оси, выравнивают поверхности опор между собой в горизонтальной плоскости, а затем посредством поперечных балок и винтов производят крепление опор между собой. Кроме этого, возможно осуществление фиксации поперечных балок относительно опор шпильками. Изобретение позволяет упростить изготовление и сборку устройства, а также повысить точность работы готового устройства за счет предотвращения возникновения остаточных напряжений в его конструкции. 1 з.п. ф-лы, 3 ил.

Изобретение относится к координатному устройству и может быть использовано в высокоточном технологическом оборудовании, преимущественно при обработке изделий лазерным инструментом. Основание 1 с размещенными на нем координатными осями 2, 3 выполнено с полостью, являющейся искрогасящей камерой 9 с окнами 8. Рабочая зона соединена через окна 8 и искрогасящую камеру 9 с трубопроводом 7 газопылевого отвода. Окна 8 искрогасящей камеры 9 соединены с рабочей зоной 6 посредством дроссельных устройств. При лазерной обработке воздух из рабочей зоны вместе с продуктами сгорания поступает через дроссельное устройство в искрогасящую камеру 9. При этом скорость потока падает, и частицы продуктов сгорания оседают в камере. Искрогасящая камера выгружается от продуктов сгорания через люк. Заглушками регулируется забор воздуха из той части камеры, в которой находится головка с лазерным инструментом, что позволяет за счет изменения скорости потока воздуха эффективно удалять продукты горения. 3 з.п. ф- лы, 6 ил.

Изобретение относится к устройству для лазерной подгонки резисторов, преимущественно выполненных по тонкопленочной или толстопленочной технологии на подложках из поликора, ситалла и керамики. Устройство содержит рабочий стол, лазерный излучатель (2) с оптической и прецизионной XY кинематической системами, размещенные на XY координатных столах (5, 6) с Z-микролифтом зонды (7, 8), цифровую измерительную систему (9) с блоками (10, 11) позиционирования и установки зондов на контактные площадки, блок (12) позиционирования пятна и задания зоны и траектории реза лазерного излучателя. Блоки (10, 11) позиционирования и установки зондов связаны с блоком (13) задания зон перемещения зондов. Прецизионная XY кинематическая система, управляемая блоком (12), обеспечивает позиционирование пятна лазерного излучателя и выполнение подгоночного реза. Размещение и фиксацию подложки осуществляют на рабочем столе. Каждый из зондов перемещают на контактные площадки XY координатными столами (5, 6), которые управляются блоками (10, 11). Измерение данных, поступающих с зондов, обеспечивается цифровой измерительной системой (9). В блоке (13) реализована технология безаварийного движения измерительных зондов между контактными площадками. В результате достигается надежность работы устройства и предотвращается повреждение обрабатываемого изделия. 11 ил.

Изобретение относится к области машиностроения, а именно к технологии обработки материалов лазерным излучением. Лазерную обработку материалов выполняют с подсветкой рабочей зоны обрабатываемого материала, частота которой отлична от частоты лазерного излучения. Пропускают отраженные от обрабатываемого материала лучи лазерного излучения и подсветку через фокусирующую линзу. Разделяют лучи лазерного излучения и подсветки посредством поворотного диахронического зеркала. Фокусируют лучи подсветки в телевизионной камере. Используют ахроматическую фокусирующую линзу, а частоту подсветки выбирают в зеленой части видимого спектра. В результате повышается качество обработки за счет получения возможности дистанционного наблюдения за качеством процесса обработки при применении сканирующих устройств. 1 ил.

Изобретение относится к области машиностроения, в частности к высокоточному технологическому оборудованию, используемому, например, при обработке изделий лазерным инструментом

Изобретение относится к области машиностроения, а именно к устройствам, обеспечивающим поворот обрабатываемого изделия, и может быть использовано в высокоточном технологическом оборудовании, например при обработке изделий лазерным инструментом

Изобретение относится к устройствам, обеспечивающим обработку материалов лазерным излучением

Изобретение относится к области машиностроения, а именно к технологии сборки линейных осей, предназначенных для перемещения головки для обработки изделия в высокоточном технологическом оборудовании

Изобретение относится к области машиностроения, а именно к устройствам, обеспечивающим обработку материалов лазерным излучением

Изобретение относится к области машиностроения и может быть использовано в высокоточном технологическом оборудовании, например, при обработке изделий лазерным инструментом

Изобретение относится к области машиностроения, а именно к устройствам, обеспечивающим линейное перемещение обрабатываемого изделия, и может быть использовано в высокоточном технологическом оборудовании, например, при обработке изделий лазерным инструментом

Изобретение относится к области машиностроения, а именно к устройствам, обеспечивающим линейное перемещение обрабатываемого изделия по двум взаимно перпендикулярным осям

Изобретение относится к области машиностроения, а именно к устройствам, обеспечивающим линейное перемещение обрабатываемого изделия по двум взаимоперпендикулярным осям

Изобретение относится к устройствам для лазерной обработки материалов и может быть использовано для сварки, пайки, резки металлов и сплавов, а также некоторых пластиков

 


Наверх