Патенты автора Пантилеев Сергей Петрович (RU)

Изобретение относится к газификации сжиженного природного газа (СПГ), где реализуется цикл Ренкина при газификации СПГ, и может быть использовано для получения тепловой, электрической энергии и одновременно водяного льда, пригодного для пищевой промышленности. Система газификации сжиженного природного газа котельной содержит криогенную емкость для хранения СПГ, криогенный насос для перекачки СПГ через теплообменники, получающие тепло от уходящих дымовых газов котлов котельной, турбодетандера с электрическим генератором на одном валу. Первым по ходу СПГ теплообменником является льдогенератор водяного льда, в котором теплота фазового перехода воды в лед испаряет СПГ, превращая его в природный газ. Дополнительный теплообменник - охладитель питьевой воды охлаждает воду, идущую в льдогенератор из установки водоподготовки, выходящим из турбодетандера охлажденным природным газом. Изобретение позволяет повысить эффективность газификации сжиженного природного газа в льдогенераторе, имеющем максимальный коэффициент теплопередачи при фазовом переходе СПГ в газ, а воды - в лед, а также общую эффективность работы котлов котельной. 3 з.п. ф-лы, 2 ил.

Изобретение относится к регазификации сжиженного природного газа (СПГ), где используются циклы Ренкина для регазификации СПГ. Система включает емкость с СПГ, криогенный насос для перекачки СПГ через теплообменники, расположенные в газоходах и получающие тепло от уходящих из котла дымовых газов, турбодетандер с электрогенератором на одном валу. Магистраль дымовых газов выполнена в виде нескольких газоходов: центрального газохода и двух дополнительных газоходов, отходящих от центрального, в которых установлены теплообменники. Дополнительные газоходы с установленными в них теплообменниками сообщены друг с другом посредством поворотного газохода с сепарационным устройством для удаления конденсата. Газоходы снабжены регулировочными шиберами. Изобретение позволяет повысить эффективность регазификации сжиженного природного газа, а также общую эффективность использования сбрасываемого тепла уходящих газов котлов котельной и холода СПГ. 1 з.п. ф-лы, 2 ил.

Изобретение относится к энергетике и может быть использовано для утилизации тепла продувочной воды в форсунках для распыливания вязких горючих жидкостей в паровых котлах, работающих на жидких топливах. Устройство содержит топливную форсунку, золоуловитель, конденсационный поверхностный подогреватель топлива, каплеуловитель и сборник конденсата. Топливная форсунка работает на распыливающем агенте - продувочной воде. Поверхностный подогреватель топлива получает тепло и скрытую теплоту конденсации водяных паров из продуктов сгорания. Технический результат состоит в упрощении конструкции; экономии топлива за счет замены пара как распыливающего агента на продувочную воду, использовании всей теплоты продувочной воды и продуктов сгорания при помощи конденсационного подогревателя топлива и возврата образовавшегося конденсата на питание котла; уменьшении выбросов окислов серы и азота за счет нейтрализации их веществами, выносимыми из котла продувочной водой. 3 ил.

Использование: для создания импульса ударной волны на больших глубинах моря и в скважинах. Источник в скважинах в процессе их бурения во время перерывов используется для выделения объектов в области, расположенной впереди и вокруг бурящегося ствола скважины при прогнозном обращенном ВСП или при межскважинном просвечивании. Устройство содержит: полый корпус, во внутренней двухступенчатой проточке которого с возможностью возвратно-поступательного движения установлен с уплотнениями поршень привода со штоком поршня зачистки имплозивной камеры. К верхнему концу штока поршня привода жестко крепится груз возврата поршня зачистки. На наружной двухступенчатой проточке с возможностью возвратно-поступательного движения установлена с уплотнениями подвижная гильза с поршнем. Внутренняя полость под гильзой заполнена маслом и в верхней своей части через отверстия и проточки связана с подпоршневой полостью поршня привода поршня зачистки. В нижней уменьшенного диаметра части корпуса выполнены продольные окна. Снизу к корпусу на герметичной резьбе жестко крепится гильза камеры, которая снизу закрыта муфтой, соединенной с гильзой на герметичной резьбе. В осевое отверстие муфты установлен обратный клапан, препятствующий попаданию жидкости в камеру. К муфте снизу жестко крепится нижний груз, по форме обеспечивающий вертикальное положение оси камеры. Подвижная гильза сверху жестко крепится к отсеку с сейсмическим приемником. Отсек через кабельный наконечник крепится к грузонесущему кабелю. Поршень зачистки с возможностью возвратно-поступательного движения уплотнен в гильзе камеры и сверху жестко закреплен с уплотнением к полому ползуну, который свободно вставлен и уплотнен в отверстии хвостовика, жестко закрепленного и уплотненного на штоке и ограниченого в осевом перемещении нижним буртом хвостовика. Внутри камеры под поршнем зачистки свободно с большим радиальным зазором установлен боек, который выполнен с внутренней проточкой в осевом отверстии, которая имеет возможность взаимодействовать с несколькими пружинными зацепами, жестко закрепленными в нижней части поршня зачистки. Окна камеры находятся в открытом положении, когда поршень зачистки находится в крайнем верхнем положении. Рабочие площади поршня привода поршня зачистки и подвижной гильзы с поршнем подобраны так, что давление в масляной полости при натяжении кабеля создает усилие на поршне зачистки, превышающее усилие на нем от гидростатического давления. По этой причине при натяжении кабеля при помощи лебедки в первый момент происходит зачистка камеры, потом открытие окон и гидравлический удар жидкости и бойка по дну муфты и только потом подъем устройства над забоем. При постановке устройства на забой и появлении слабины в кабеле поршень зачистки под действием груза возврата опускается в крайнее нижнее положение, где пружинными захватами соединяется с бойком. В отсеке установлен сейсмический приемник, который по первому полученному максимальному сигналу управляет пускам сейсмостанции и передает в дальнейшем на станцию полученные им параметры отраженных волны. Технический результат: достижение многократного повторения сейсмического импульса при строительстве скважин во время перерывов в бурении для проведения прогнозного обращенного ВСП или для межскважинного просвечивания, при которых производятся выделения объектов в области, расположенной впереди и вокруг бурящегося ствола скважины. Это все достигается без дополнительных работ по подъему и спуску колонны с использованием только каротажной лебедки. Для работы источник не требует подачи на него ни электрической энергии, ни гидравлической жидкости. 1 ил.

Изобретение относится к области сейсморазведки и может быть использовано при сейсмической разведке в процессе бурения

Изобретение относится к геофизическим методам исследования, в частности к модификации обращенного вертикального сейсмического профилирования (ВСП), использующей в качестве источника упругих колебаний работающее буровое долото, воспринимающее дополнительные ударные нагрузки от гидроударного устройства, устанавливаемого над долотом

Изобретение относится к области геофизических исследований и может быть использовано для возбуждения сейсмических волн в скважинах

Изобретение относится к устройствам для генерирования сейсмической энергии

Изобретение относится к устройствам для генерирования сейсмической энергии и может быть использовано для вертикального сейсмического профилирования и межскважинного просвечивания

Изобретение относится к скважинным устройствам для генерирования сейсмической энергии

Изобретение относится к скважинным устройствам для генерирования сейсмической энергии

Изобретение относится к области устройств, предназначенных для пуска сейсмических источников из скважин

 


Наверх