Патенты автора Лоскутов Анатолий Юрьевич (RU)

Изобретение относится к аналитической химии. Способ определения содержания ортохлорбензилиденмалонодинитрила (CS), хлорацетофенона (CN), дибензоксазепина (CR), морфолида пеларгоновой кислоты (МПК) в спиртовых экстрактах методом обращенно-фазовой высокоэффективной жидкостной хроматографии включает пробоподготовку путем жидкостной экстракции и последующее разделение на хроматографической колонке, заполненной обращенно-фазовым носителем, содержащим привитую фазу С18, детектирование с использованием диодно-матричного детектора при длине волны 230 нм. Одновременное количественное определение CS, ХАФ, CR, МПК проводится в ходе одного анализа по градуировочному графику вещества CS, с применением рассчитанных значений относительных массовых градуировочных коэффициентов для каждого вещества, с использованием хроматографической колонки длиной 150 мм и внутренним диаметром 4,6 мм с зернением частиц 5,0 мкм, используя в качестве элюента бинарную смесь ацетонитрила и дистиллированной воды в соотношении 80/20 об.%, при температуре термостата колонки 26°С. Техническим результатом является разработка универсального способа одновременного определения ортохлорбензилиденмалонодинитрила, хлорацетофенона, дибензоксазепина и морфолида пеларгоновой кислоты в спиртовых экстрактах методом высокоэффективной жидкостной хроматографии с расширением диапазона определяемых массовых концентраций и уменьшением общего времени анализа. 1 ил., 4 табл.

Изобретение относится к области средств и методов выявления радиационной обстановки. Способ определения местоположения точечного источника гамма-излучения с анизотропным полем включает построение диаграммы, описывающей угловое распределение мощности дозы гамма-излучения и ее аппроксимацию эллипсом. Построение эллипса в системе координат, связанной с центром окружности, вдоль которой проводились измерения мощности дозы гамма-излучения, делает возможное определение реперной линии, проходящей через большую ось эллипса, на которой расположен источник. Проведение разведки вдоль другой окружности позволяет построить еще один эллипс и задать вторую реперную линию. При этом точка пересечения реперных линий будет определять положение источника. Технический результат – повышение точности локализации источников с анизотропным полем гамма-излучения. 7 ил., 2 табл.

Изобретение относится к имитаторам отравляющих веществ и может быть использовано для моделирования объектов индикации при обучении специалистов войск радиационной, химической и биологической защиты с целью получения ими практических навыков работы со средствами химической разведки, предназначенными для обнаружения факта химического заражения. Имитационная рецептура для обучения специалистов войск радиационной, химической и биологической защиты содержит действующий компонент, обладающий индикационным эффектом, и органический наполнитель. Действующим компонентом является диазинон, органическим наполнителем - дизельное топливо. Также в состав рецептуры входит органический сорастворитель - растворитель Р-4 и поверхностно-активное вещество - дидециловый эфир фосфорной кислоты при следующем соотношении компонентов, мас. %: диазинон 24, дизельное топливо 54, растворитель Р-4 20, дидециловый эфир фосфорной кислоты 2. Обеспечивается срабатывание средств химической разведки как дистанционного, так и локального принципов действия. 1 табл.

Изобретение относится к области исследований или анализа дисперсного состава аэрозольных частиц загрязняющих веществ в воздухе при проведении пробоотбора с использованием импакторов. Способ адаптирования каскадных струйных импакторов к различным условиям отбора проб аэрозоля, характеризующихся изменением плотности вещества отбираемых частиц и(или) объемной скорости аспирации, заключается в корректировке скорости воздуха на входе в каждый каскад и(или) длины пробега частиц до улавливающей подложки путем использования комплектов сменных элементов конструкции каскадов импактора, при этом обеспечение функциональности одного и того же импактора при различных условиях отбора проб аэрозоля достигается комбинированием величины сечения сопел и(или) расстояния от входного канала каскада до улавливающей подложки за счет использования комплекта сменных мембран с отверстиями разного количества и диаметра и(или) комплекта сменных элементов стоек различной длины, удерживающих улавливающие подложки, либо стоек, конструктивно позволяющих изменять и фиксировать их длину за счет резьбового соединения. Техническим результатом является приобретение импакторами свойства универсальности к условиям отбора проб, а также расширение их функциональных возможностей по выбору необходимого диапазона дисперсности отбираемого аэрозоля на различных каскадах. 2 ил.

Изобретение относится к имитаторам отравляющих веществ и может быть использовано для имитации химического заражения при обучении личного состава войск действиям в условиях химического заражения, преодолению зараженных участков местности, проведению дегазации вооружения и военной техники. Имитационная рецептура содержит действующий компонент, обладающий раздражающим действием - хлорацетофенон, органический наполнитель - дизельное топливо, органический сорастворитель - растворитель Р-4 и поверхностно-активное вещество - дидециловый эфир фосфорной кислоты при следующем соотношении компонентов, мас. %: хлорацетофенон – 5, дизельное топливо – 63, растворитель Р-4 – 30, дидециловый эфир фосфорной кислоты - 2. Обеспечивается улучшение показателей агрегативной устойчивости при хранении и стабилизации состава предлагаемой имитационной рецептуры, а также возможность использования в условиях низких температур. 4 табл.

Изобретение относится к исследованию паров веществ путем измерения их физических свойств с использованием метода масс-спектрометрии в сочетании с методом хроматографии. Способ идентификации фосфорорганических соединений методом хромато-масс-спектрометрии с цилиндрической ионной ловушкой заключается в разделении веществ на хроматографической колонке с последующим детектированием в масс-детекторе, при этом в условиях одного анализа выделяют масс-спектры электронной ионизации в сканах на спаде, вершине и подъеме одного хроматографического пика, отличающиеся набором пиков-ионов как по массовым значениям, так и по их интенсивности; проводят групповую идентификацию путем сравнения с масс-спектрами базы данных NIST; определяют вероятную молекулярную массу; вычисляют количество углеродных атомов в О-алкильных радикалах, при этом разница между значением псевдомолекулярного иона и иона, образующегося вследствие элиминирования алкенового фрагмента, должна быть кратна 14; по совокупности полученных данных производят идентификацию фосфорорганического соединения. Техническим результатом изобретения является повышение достоверности и надежности идентификации фосфорорганических соединений в пробах неизвестного состава, а также расширение функциональных возможностей масс-спектрометрического метода на основе цилиндрической ионной ловушки. 5 ил., 1 табл.

Изобретение относится к области аналитических исследований по определению структуры органических соединений методами инфракрасной спектрометрии и может быть использовано для точной идентификации и прогнозирования Р-алкильного радикала у гомологов О-алкилалкилфторфосфонатов. Заявленный способ идентификации и прогнозирования Р-алкильных радикалов гомологов О-алкилалкилфторфосфонатов по их инфракрасным спектрам средней области диапазона (1330-1240 см-1) конденсированной фазы заключается в определении набора спектральных признаков-предикторов, позволяющих проводить их классификацию по виду Р-алкильного радикала. Пары значений «волновое число - оптическая плотность» спектра исследуемого образца, представленного в числовом формате, сортируют по убыванию значений волнового числа и преобразуют спектр в производную первого порядка по формуле где A'(λi) - первая производная оптической плотности по волновому числу λ, А(λi) - оптическая плотность при i-м значении волнового числа λ, Δλ=(λi+1 - λi) - шаг дискретизации спектра. На частичных интервалах (dt) 1320-1310 см-1, 1300-1290 см-1, 1270-1260 см-1, 1260-1250 см-1 проводят измерения производной оптической плотности по волновому числу и вычисляют значения прогностического параметра G по формуле где Gj - стандартизованная сумма значений первой производной оптической плотности по волновому числу на j-м интервале, j - номер частичного интервала dt (dt=10 см-1), A'(λi) - i-e значение первой производной оптической плотности по волновому числу на j-м частичном интервале dt, k - количество значений производной на j-м частичном интервале dt, включая значения на его границах, МΣ - среднее арифметическое суммарных (накопленных для каждой точки интервала dt) значений первой производной на j-м частичном интервале, SΣ - среднее квадратическое отклонение суммарных (накопленных для каждой точки интервала dt) значений первой производной на j-м частичном интервале. Значения параметра G используют в качестве предикторов для расчета показателей классификации по классификационным функциям, полученным в результате проведения дискриминантного анализа на обучающей выборке эталонных спектров О-алкилалкилфторфосфонатов одного спектрального разрешения; по наивысшим показателям классификации устанавливают структуру Р-алкильного радикала исследуемого соединения. По распределению объектов обучающей выборки в пространстве дискриминантных функций прогнозируют Р-алкильные радикалы гомологов О-алкилалкилфторфосфонатов. Технический результат - повышение надежности, оперативности и эффективности затрат при контроле токсичных химикатов. 7 ил., 10 табл.

Изобретение относится к области определения структуры органических соединений и касается способа идентификации алкильных радикалов соединений гомологического ряда О-алкилалкилфторфосфонатов. Способ включает в себя определение набора спектральных признаков, позволяющих получать количественные характеристики для группировки соединений по виду их алкильных радикалов. Выборку спектров преобразуют так, чтобы точка с минимальной интенсивностью в диапазоне 1500-700 см-1 соответствовала нулю по шкале оптической плотности, а точка с максимальной интенсивностью соответствовала единице. Рассчитывают интенсивности (Ai') для каждой точки спектра в диапазоне 1500-700 см-1. Далее измеряют относительные интенсивности самых интенсивных пиков на участках 1290-1250 см-1, 1065-990 см-1, 877-832 см-1, 940-910 см-1. По результатам измерений определяют набор данных для расчета показателей функций классификации, построенных в результате применения методов дискриминантного анализа. По наивысшим показателям функций классификации с учетом интенсивности максимального пика из диапазона 940-910 см-1 устанавливают структуру алкильных радикалов. Технический результат заключается в повышении надежности и оперативности определения токсичных химикатов. 8 ил., 13 табл.

Способ идентификации фосфорорганических примесей основан на идентификации целевой токсичный О-алкилалкилфторфосфонат по известным хроматографическим и спектральным характеристикам. При этом для выделения фосфорорганических примесей из общего числа сопутствующих примесей прогнозируют их хроматографические индексы удерживания, используя линейное уравнение зависимости индекса удерживания каждой возможной фосфорорганической примеси от индекса удерживания целевого О-алкилалкилфторфосфоната. Также определяют корреляционную зависимость значений индексов удерживания от времени удерживания для предельных углеводородов. Используя установленную корреляционную зависимость, пересчитывают найденные значения индексов удерживания на время удерживания и проводят поиск возможной фосфорорганической примеси по ее характеристичному пику иона в заданной временной области хроматограммы. Технический результат: повышение оперативности и точности идентификации. 4 табл., 5 ил.

Изобретение относится к исследованиям в области индикации и идентификации химических веществ, в частности к оптимизации способа проведения специального химического контроля. Предложен способ обнаружения и идентификации токсичных химикатов с использованием мобильного комплекса химического контроля согласно разработанному алгоритму проведения химического контроля с использованием оборудования данного комплекса. Способ включает следующие три этапа: экспресс-анализ, проводимый до 30 минут последовательно с помощью газоанализатора GDA 2.5, спектрометров TruDefender FTG, FirstDefender и TruDefender FT; отбор проб, проводимый до 5 минут параллельно с помощью пробоотборных трубок Tenax-ТА и комплекта КПО-1М; углубленный анализ, проводимый до 180 минут с помощью хромато-масс-спектрометра Agilent 5975Т, включающего парофазную систему Agilent G1888 и термодесорбер АСЕМ 9300. Технический результат – повышение точности обнаружения различных концентраций токсичных химикатов и идентификации этих веществ в объектах окружающей среды, а также своевременное информирование должностных лиц о характере примененного химиката с целью принятия ими дальнейшего решения на проведение соответствующих мероприятий. 2 ил.

Изобретение относится к исследованию или анализу материалов, в том числе фосфорорганических веществ (ФОВ), путем определения их химических или физических свойств, а именно путем разделения образцов материалов на составные части с использованием адсорбции, абсорбции, хроматографии и масс-спектрометрии, а более конкретно к способам идентификации и количественного определения фосфорорганических веществ методами хромато-масс-спектрометрии. Способ бесстандартной оценки количества фосфорорганического вещества в пробе заключается в подготовке анализируемой пробы, вводе подготовленной пробы в испаритель хроматографа, разделении пробы в хроматографической капиллярной колонке, регистрации сигнала масс-спектрометрического детектора и установлении градуировочной зависимости. Причем при установлении градуировочной зависимости определяют зависимость масс-спектральной характеристики детектора с цилиндрической ионной ловушкой от массы анализируемого фосфорорганического вещества. Далее выделяют диапазоны массы для характеристичных ионов с массовыми числами, равными [М+1]+ и [2М+1]+, где М - молекулярная масса вещества, а также для иона, являющегося характеристичным ионом для анализируемого фосфорорганического вещества при использовании ионизации электронным ударом. Затем в каждом диапазоне масс устанавливают корреляционные зависимости изменения интенсивности нехарактеристичных ионов данного диапазона масс от массы. Далее оценивают количество вещества в пробе, используя установленные корреляционные зависимости. Техническим результатом является расширение функциональных возможностей мобильного хромато-масс-спектрометра и повышение уровня безопасности проведения процесса анализа за счет снижения риска поражения персонала химической лаборатории фосфорорганическими отравляющими веществами при проведении градуировки детектора. 2 табл., 5 ил.

Изобретение относится к области обезвреживания агрессивных химических соединений, в частности насыщенных ангидридами кислородосодержащих соединений. Обезвреживанию подвергают дымовую смесь С-4, содержащую серный ангидрид и хлорсульфоновую кислоту с примесью серной кислоты. Состав представляет собой опоку серую, содержащую гейландит, метастильбит, тридимит, кальцит и α-кварц. Опока модифицирована 18%-ным водным раствором гидроксида натрия или гидроксида калия в присутствии четвертичного аммониевого соединения. Состав создан из доступного природного материала и позволяет обеспечить безопасность и эффективность обезвреживания агрессивных химических составов и отходов. 2 табл., 4 пр.

Изобретение относится к способу прогнозирования газохроматографических индексов удерживания алкилфторфосфонатов и может быть использовано для идентификации опасных соединений. Предложенный способ заключается в преобразовании соединения несимметричной структуры в два соединения симметричной структуры относительно выбранного центра симметрии и в определении индекса удерживания как полусуммы индексов удерживания соединений симметричных структур, отличающийся тем, что в качестве центра симметрии соединения класса O-алкилалкилфторфосфонатов выбирают такой атом углерода в O-алкильном радикале, в разветвлении которого находятся два различных алкильных фрагмента или алкильный фрагмент и атом водорода; далее производят структурные преобразования соединения в два соединения того же класса, O-алкилалкилфторфосфонатов, симметричной структуры относительно выбранного атома углерода, используя лишь эти фрагменты и не подвергая структурному изменению остальную часть молекулы. Предложен новый способ прогнозирования газохроматографических индексов с улучшенной достоверностью и объективностью. 1 пр., 2 табл., 3 ил.

Изобретение относится к способам очистки о-хлорбензальмалононитрила от продуктов разложения, образовавшихся в результате его длительного хранения. Предлагаемый способ очистки о-хлорбензальмалононитрила включает удаление примесей и дальнейшую переработку образующихся отходов до соединений, не являющихся экологическими загрязнителями. Способ характеризуется тем, что удаление примесей из расплава ведут при температурном режиме 120-130°C и остаточном разряжении 40-50 мм рт. ст. с дальнейшей обработкой побочных продуктов 20-25%-ной пароаммиачной смесью при температуре 120-130°C. Способ позволяет очистить о-хлорбензальмалононитрил до содержания основного вещества не ниже 97%, что делает его пригодным для дальнейшего использования. 1 табл., 6 пр.

Изобретение относится к области исследования или анализа небиологических материалов путем определения их химических или физических свойств, конкретно, исследования фазовых изменений путем удаления какого-либо компонента, например, испарением, и взвешивания остатка

Изобретение относится к исследованию или анализу материалов путем определения их химических или физических свойств, конкретно путем разделения на составные части (компоненты) с использованием адсорбции и их масс-спектрометрического исследования

Изобретение относится к способу и может быть использовано для хромато-масс-спектрометрической идентификации контролируемых токсичных химикатов в сложных многокомпонентных смесях

 


Наверх