Патенты автора Павлова Галина Валериевна (RU)

Изобретение относится к области молекулярной биологии и может быть использовано для дифференциальной диагностики глиальных опухолей мозга высоких степеней злокачественности. Описан способ дифференциальной диагностики глиом высоких грейдов, в котором из образца ткани глиомы выделяют общую РНК, осуществляют синтез 1-й цепи кДНК с помощью реакции обратной транскрипции, проводят ПЦР в реальном времени с праймерами, подобранными к мРНК генов ТЕK, С3, MKI67, HIF1A, OLIG2, TNFRSF1A. Рассчитывают степень злокачественности глиомы «у» по формуле: у=1,69-2,844×Х1-0,883×Х2-0,043×Х3+0,081×Х4+0,169×Х5-0,04×Х6, где X1 - экспрессия гена ТЕK; Х2 - экспрессия гена С3; Х3 - экспрессия гена MKI67; Х4 - экспрессия гена HIF1A; Х5 - экспрессия гена OLIG2; Х6 - экспрессия гена TNFRSF1A. При значениях «у» больше 2,4, но меньше 3,4 опухоль относят к Grade III; при значениях «у» больше, чем 3,4 ставят диагноз «глиобластома», Grade IV. Технический результат заключается в повышении точности способа, снижении трудоемкости и его упрощении. 1 ил., 1 пр.

Изобретение относится к биотехнологии и может быть использовано для оценки степени злокачественности клеток в культурах глиомы. Изобретение направлено на повышение точности способа и его упрощение. Способ позволяет различать по степени злокачественности культуры клеток глиом Grade II, Grade III и Grade IV. Указанный результат достигается тем, что из культуры клеток глиомы выделяют тотальную РНК, осуществляют синтез 1-й цепи кДНК с помощью реакции обратной транскрипции, проводят ПЦР в реальном времени с праймерами, подобранными к экзонным участкам генов NOTCH2, TUBB3, GDNF, SOX2, CDK4, PDGFA1, NANOG, MDM2. 1 ил., 1 табл., 3 пр.

Изобретение относится к области молекулярной биологии и нейрогенетики, в частности к способу оценки степени анаплазии клеток в культуре глиомы на основании анализа экспрессии генов. Для осуществления способа сначала выделяют тотальную РНК из образцов. Далее проводят обратную транскрипцию с последующей амплификацией в режиме реального времени RT-PCR для определения экспрессии генов Sox2 и CDK6. Затем рассчитывают значение соотношения экспрессий генов Sox2/CDK6 и по его значению судят о степени анаплазии клеток. При его значении ≤0,11 степень анаплазии клеток соответствует II грейду, при значении больше 0,11, но меньше 0,7 степень анаплазии клеток соответствует III грейду, а при значении ≥0,7 наблюдается анаплазия клеток IV грейда. Настоящее изобретение позволяет упростить диагностику степени анаплазии клеток глиомы и повысить её точность. 2 табл., 2 пр.

Изобретение относится к области молекулярной биологии и медицины, в частности к онкологии и нейрохирургии, и предназначено для дифференциальной диагностики глиальных опухолей головного мозга. Осуществляют взятие образца ткани мозга, выделение РНК и определение экспрессии генов методом ОТ-ПЦР в реальном времени. Измеряют экспрессию генов TIE2 и MELK. Заключение о наличии и типе глиальной опухоли головного мозга составляют на основании значений индекса экспрессии генов MELK/TIE2. При значении индекса экспрессий генов MELK/TIE2 более 400 диагностируют глиобластому. При значении индекса экспрессий генов MELK/TIE2 менее 400 но более 1,8 ставят диагноз глиомы III грейда. При значении индекса экспрессий MELK/TIE2 менее 1,8 заболевание не связано со злокачественным новообразованием. Изобретение обеспечивает упрощение способа дифференциальной диагностики злокачественных опухолей головного мозга и сокращение его трудоемкости. 1 ил., 3 пр.

Изобретение относится к области биотехнологии. Описана группа изобретений, включающая аптамерный модифицированный ДНК олигонуклеотид, специфически связывающийся с рецептором эпидермального фактора роста (EGFR) (варианты), аптамерный модифицированный ДНК олигонуклеотид, специфически связывающийся с мутантной формой рецептора эпидермального фактора роста (EGFR vIII) (варианты), способ узнавания рецептора эпидермального фактора роста (EGFR) и способ узнавания мутантной формы рецептора эпидермального фактора роста (EGFR vIII). В одном из вариантов реализации аптамерный модифицированный ДНК олигонуклеотид характеризуется нуклеотидной последовательностью общей формулы 5'-CGACGCACCATTTGTTTAATAXGTTTTTT AATTCCCCTTGTGGTGCGTCG-3', где X - 5-(1-(пропиламид 4-пиренбутановой кислоты)-4-триазолил)дезоксирибоуридин.Изобретение расширяет арсенал средств, специфически связывающихся с рецептором эпидермального фактора роста (EGFR) и его мутантной формой (EGFR vIII). 6 н.п. ф-лы, 3 пр., 7 ил.

Изобретение относится к области биотехнологии и может быть использовано в селекции из комбинаторных библиотек индивидуальных одноцепочечных олигонуклеотидов или семейств олигонуклеотидов с требуемыми функциями. Для придания повышенного структурного разнообразия и высокой аффинности к мишени олигонуклеотиды содержат до 4% модифицированных гетероциклических оснований. Для получения олигонуклеотидов используют низкую концентрацию комбинаторных библиотек, индивидуальную для каждого раунда селекции, что позволяет контролировать комплексообразование между олигонуклеотидами и молекулярной мишенью и нейтрализовать эффект нецелевых и неспецифических взаимодействий с носителем, применяемым для иммобилизации молекулярной мишени. Описывается также установка для проведения селекции и необходимые подготовительные эксперименты. Полученные в результате олигонуклеотиды характеризуются низкими скоростями диссоциации и могут быть использованы в качестве аналогов моноклональных антител в типичных для них сценариях применения, 2 з.п. ф-лы, 3 табл., 1 пр., 4 ил.

Группа изобретений относится к области биотехнологии и медицины, а именно к получению лекарственной форма аптамера RA-361. Аптамер RA-361 включает 5'-GG-TT-GG-TGT-GG-TT-GG-T-GG-TT-GG-TGT-GG-TT-GG-3', ковалентно модифицированный 20 кДА ПЭГ в 16 положении в концентрации 30 мг/мл с допустимым пределом до 35,7 мг/мл, воду, хлорид калия с концентрацией 10 мМ, где концентрация хлорида калия не превышает 20 мМ, и физиологический раствор, где лекарственная форма имеет значение рН в пределах между 7 и 7,5 и представляет собой прозрачный водный раствор. Группа изобретений относится также к способу получения лекарственной формы аптамера, включающему в себя получение модифицированного ПЭГ аптамера RA-361 с проведением хроматографической очистки и цикла концентрирования активного вещества, нагрев и поддержание температуры образцов активного вещества до 95°С в течение 5 минут с последующим охлаждением образцов до комнатной температуры со скоростью 5°С в минуту и проведение стерилизации с помощью фильтров с диаметром пор 0,22 мкм для получения фармацевтической субстанции в концентрации 120-150 мг/мл, затем субстанцию подвергают четырехкратному растворению в стерильном физиологическом растворе, где используется вода, приготовленная по стандарту ISO 3696, и фасуют в стеклянные флаконы в ламинарном шкафу, после чего укупоривают, при этом на выходе получают субстанцию объемом 10 мл, а концентрация олигонуклеотида RA-361 составляет 30-35,7 мг/мл. Использование данной группы изобретений позволяет получить антитромбиновый аптамер, представляюший собой 31-звенный ДНК-олигонуклеотид, ковалентно модифицированный 20 кДА ПЭГ и обладающий пространственной структурой типа антипараллельного G квадруплекса, стабилизированного катионами калия, позволяющий сохранять показатели свертываемости плазмы крови. 2 н.п. ф-лы, 6 пр., 7 табл., 12 ил.

Изобретение относится к области биотехнологии. Описан способ получения нового ДНК-аптамера к EGFR (epidermal growth factor receptor, рецептор эпидермального фактора роста) и его мутантной форме EGFR vIII, связывающегося с внеклеточным доменом белков. В изобретении описан аптамерный дезоксирибоолигонуклеотид, специфически связывающийся с EGFR и EGFR vIII и характеризующийся нуклеотидной последовательностью общей формулы 5'-CGACGCACCATTTGTTTAATATGTTTTTTA ATTCCCCTTGTGGTGCGTCG-3'. Разработанный аптамер обладает улучшенной аффинностью к белку EGFR человека и к его мутантной форме EGFR vIII. 4 н. и 1 з.п. ф-лы, 12 ил., 5 пр.

Изобретение относится к биотехнологии. Описан способ выявления кДНК вируса SARS-CoV-2. Использование специфичных праймеров позволяет выявлять генетический материал вируса SARS-CoV-2 в исследуемых образцах методом полимеразной цепной реакции (ПЦР). Одна пара праймеров подобрана к гену orf1ab. Их последовательности: SEQ ID NO: 1-5' cagtctgtaccgtctgcgg 3', SEQ ID NO: 2-5' cagtactagtgcctgtgccg 3'. Длина ампликона составляет 158 п.н. Две пары праймеров подобраны к гену N. Их последовательности и длина ампликонов: SEQ ID NO: 3-5' ggtggaccctcagattcaactgg 3', SEQ ID NO: 4-5' ttttaccgtcaccaccacgaa 3', длина ПЦР-продукта 250 п.н.; SEQ ID NO: 5-5' cgcattggcatggaagtcac 3', SEQ ID NO: 6-5' tgtctctgcggtaaggcttg 3', длина ПЦР-продукта 203 п.н. После проведения ПЦР продукты реакции разделяют в электрофорезе с маркером длины. По наличию и длине ампликонов способ позволяет выявлять и идентифицировать наличие вируса SARS-CoV-2 в биологическом материале. Изобретение может найти применение в медицине при лабораторной диагностике COVID-19. 2 ил., 4 табл., 2 пр.

Изобретение относится к области биотехнологии. Изобретение представляет собой способ получения новых ДНК-аптамеров к EGFR (epidermal growth factor receptor, рецептор эпидермального фактора роста), узнающих внеклеточный домен белка и содержащих химически модифицированный нуклеотид. В изобретении описаны аптамерные дезоксирибоолигонуклеотиды, специфически связывающиеся с EGFR и характеризующиеся нуклеотидной последовательностью общей формулы ACGCACCATTTGTTTAATATGXTTTTTAATXCCCCTTGTGGTGTGT, где X - либо тимидин, либо 5-(1-(пропиламид 4-пиренбутановой кислоты)-4-триазолил)дезоксирибоуридин, причем модифицированный нуклеотид присутствует в олигонуклеотиде только в одном из положений. Разработанные аптамеры обладают улучшенной аффинностью к белку EGFR человека и к его мутантной форме EGFR vIII. 6 н.п. ф-лы, 7 ил., 3 пр.

Изобретение относится к медицине, а именно к фармакологии, и может быть использовано для оценки сродства олигонуклеотида к мишени. Для этого проводят мечение олигонуклеотида флуорохромом. Затем осуществляют контакт меченного олигонуклеотида с мишенью-рецептором на поверхности клеток. После чего проводят фоторегистрацию полученного образца с использованием флуоресцентного микроскопа. При этом измеряют оптическую плотность области окрашивания инвертированных изображений и сравнивают с отрицательным контролем. Затем рассчитывают сродство олигонуклеотида к мишени. Изобретение обеспечивает отбор наиболее высокоаффинных олигонуклеотидов к молекулам-мишеням на поверхности клеток для маркирования клеток и тканей. 4 ил., 2 пр.

Изобретение относится к области биотехнологии. Описана группа изобретений, включающая аптамерный ДНК олигонуклеотид, специфически связывающийся с EGFR, характеризующийся нуклеотидной последовательностью:ACGCACCATTTGTTTAATATGTTTTTTAATTCCCCTTGTGGTGTGT, и способ получения вышеуказанного аптамерного ДНК олигонуклеотида. Способ получения ДНК олигонуклеотида заключается в обрезании 5`- и 3`-концевых последовательностей последовательности ATCCAGAGTGACGCAGCATTTGTTTAATATGTTTTTTAATTCCCCTTGTGGTGTGTTGTGGACACGGTGGCTTAGT и замене 16G на 16С, что приводит к увеличению дуплекса с 5 до 8 пар нуклеотидов и его стабилизации. Предложенное изобретение расширяет арсенал средств для связывания с EGFR. 2 н.п. ф-лы, 4 ил., 2 пр.

Изобретение относится к биотехнологии и может быть использовано в фармакологии и медицине для оценки цитотоксичности новых синтезированных веществ, в частности аптамеров противоопухолевого действия. Сравнивают процессы пролиферации и апоптоза в клетках после инкубации с образцом аптамера. Для этого измеряют соотношение экспрессий генов BCL2 и PCNA. По степени превышения значения больше 1 судят о цитотоксичности аптамера. 2 табл., 2 пр.

Изобретение относится к области биохимии. Заявлена кДНК природного гена GDNF, искусственно модифицированная удалением pro-области, которая при попадании в клетки или ткани млекопитающих в составе стандартных векторов продуцирует активный специфический GDNF. Кроме того, изобретение относится к вектору экспрессии, содержащему указанную кДНК, а также к активному специфическому GDNF, кодированному указанной кДНК. При трансляции в клетках и тканях указанный GDNF стимулирует нейральную дифференцировку стволовых и прогениторных клеток с образованием нейральных отростков. Изобретение позволяет повысить активность GDNF в качестве нейрального индуктора и стимулятора образования нейральных отростков и может применяться при терапии нейродегенеративных заболеваний, травматических нарушений иннервации, а также ишемических инсультов головного мозга млекопитающих, в том числе человека. 3 н.п. ф-лы, 13 ил., 5 пр.
Изобретение относится к области экспериментальной медицины, в частности к способу моделирования тромбообразования у мышей для изучения эффективности препаратов антикоагулянта. Способ характеризуется тем, что открывают сонную артерию и яремную вену у наркотизированного животного. Под сонную артерию подкладывают изолирующий ее от окружающих тканей материал. Затем вводят препарат антикоагулянта или контрольного раствора в яремную вену. После этого приводят сонную артерию в соприкосновение с тонкой стальной иглой, соединенной с источником постоянного тока с напряжением 3 В. При этом второй электрод вводят подкожно в область бедра животного и пропускают через него ток силой 200-250 микроампер в течение одной минуты. Затем осуществляют под микроскопом видеосъемку, в результате которой отснятый видеоматериал анализируют посредством компьютерной программы для определения размера образовавшегося тромба. Способ обеспечивает приемлемую скорость образования тромба, повышая тем самым эффективность определения тромбообразования у модельных животных с электрически индуцированным тромбозом. 10 з.п. ф-лы

Изобретение относится к области молекулярной биологии и медицины. Предложена генетическая конструкция на основе векторной плазмиды pEGFP-N1 с геном устойчивости к неомицину, содержащая под контролем терморегулируемого промотора гена белка теплового шока hsp70 Drosophila melanogaster ген человеческого нейротрофического фактора GDNF с элементами теплового шока HSE 4-8 и ген зеленого флуоресцентного белка GFP. Изобретение может быть использовано при терапии нейродегенеративных заболеваний, травматических нарушениях иннервации, а также при ишемическом инсульте головного мозга млекопитающих (в том числе и человека), поскольку понижение температурного порога активации (от 39 до 42 градусов цельсия) экспрессии терапевтического гена GDNF позволяет снизить негативное воздействие высоких температур на человеческий организм при применении для лечения нейродегенеративных заболеваний конструкции, включающей терапевтический ген GDNF, что достигается использованием hsp 70 Drosophilla melanogaster. Таким образом достигается температурорегулируемая временная активация GDNF для стимуляции нейральной дифференцировки нейральных предшественников, а также предотвращает негативные последствия от гиперэкспрессии трансгенного фактора. 26 ил., 7 пр.

Группа изобретений относится к области биотехнологии. Способ модульного конструирования ДНК аптамеров, способных специфически и высокоаффинно связывать тромбин, имеющих стабилизированную основную субструктуру, предусматривает сборку их структуры моделированием из комбинации трех структурных модулей, содержащих квадруплексный модуль нуклеиновой кислоты, дуплексный модуль нуклеиновой кислоты и соединяющий их модуль нуклеиновой кислоты, имеющий неканоническую структуру, путем определения третичной структуры его спектральным методом кругового дихроизма с подтверждением факта образования более стабильного G-квадруплекса, отличного от квадруплексной структуры исходного структурного квадруплексного модуля. Использование способа модульного конструирования позволяет повысить эффективность сборки антитромбиновых ДНК-аптамеров обладающих повышенной стабильностью при физиологических условиях. 4 н.п. ф-лы, 7 ил., 3 пр.
Изобретение относится к области биохимии и молекулярной биологии, а именно к способу очистки синтетических олигодезоксирибонуклеотидов. Основной задачей настоящего изобретения является разработка эффективного способа очистки олигодезоксирибонуклеотидов с высоким выходом и высокой степенью очистки от производных кремниевой кислоты, пригодного для крупномасштабного синтеза. Поставленная техническая задача достигается способом очистки G-богатых олигодезоксирибонуклеотидов размером 20-50 оснований от примесей производных кремниевой кислоты, включающие следующим последовательные операции: - используют синтезированные на подложке CPG (СКРП, controlled pore glass) олигодезоксирибонуклеотиды, где последняя диметокситритильная защита не удалена, - готовят раствор олигодезоксирибонуклеотида, для чего к 300 мкл олигодезоксирибонуклеотида концентрацией 0,5 мкм/мл прибавляют 25 мл воды и 0,5 мл 2,0 М раствора ион-парного реагента триэтиламмония ацетата, далее TEAA, - растворы наносят на картриджи Glen Research Poly-Pak Cartridge, 60-1100-10, содержащие полимерный носитель, имеющий сродство к диметокситритилу, к картриджам присоединяют шприцы без плунжеров Millipore, Plastic syringe 50 мл, XXI 105005, картриджи со шприцами присоединяются к вакуумному манифолду CHROMBOND 730151, при помощи водоструйного насоса создается вакуум порядка 50 кПа, - картридж промывают 2 мл водного раствора аммиака и TEAA следующего состава: - к разбавленному в 20 раз 25% раствору аммиака добавляют 1/40 объема 2,0 М раствора TEAA, - картридж промывают 2 мл воды, - картридж промывают 2 мл 2% водного раствора трифторуксусной кислоты, - картридж промывают 4 мл деионизированной воды, - выделяют очищенный олигодезоксирибонуклеотид из картриджа, для чего картридж промывают 2 мл смеси 95% этилового спирта с 25% водным аммиаком, - выделяют очищенный олигодезоксирибонуклеотид из раствора, для чего пробирки с раствором очищенного олигодезоксирибонуклеотида помещают в концентратор, производят испарение раствора в течение 10 часов при температуре 60°C. 1 табл., 3 пр.

Изобретение относится к области молекулярной генетики и клеточной биологии и касается вектора экспрессии для трансгенного введения в клетки и ткани млекопитающих. Представленный вектор сконструирован на основе векторной плазмиды pEGFP-N1, содержащий фрагмент ДНК, кодирующий промотор гена белка теплового шока hsp70 Drosophila melanogaster и регуляторную последовательность перед ним, содержащую элементы теплового шока (HSE) в различном количестве, зону полилинкера, ген зеленого флуоресцентного белка (GFP) и ген устойчивости к неомицину, при этом промотор способен активироваться под действием температуры теплового шока млекопитающих или при токсическом воздействии. Такой вектор активируется при повышении температуры до 38°С или токсическом воздействии на трансгенные клетки или ткань млекопитающих. Активность входящего в состав вектора промотора можно регулировать, то есть можно вызвать или его гиперактивность, или его слабое «подтекание» или блокировать активность данного промотора путем насыщения регуляторной области элементами HSE. Изобретение может быть использовано для получения трансгенных препаратов, где исследуемый или используемый ген будет находиться под контролем регулируемого невирусного промотора. 2 з.п. ф-лы, 20 ил., 2 пр.
Изобретение относится к области медицины и представляет собой способ лечения рака молочной железы путем применения растительных цитостатиков, отличающийся тем, что предварительно у пациента получают фрагмент опухоли, культивируют ее клетки и добавляют комбинацию экстракта аконита джунгарского и экстракта барвинка розового в различных соотношениях и концентрациях и применяют то сочетание препаратов, которое вызывает максимальный процент гибели опухолевых клеток
Изобретение относится к области медицины, а именно неврологии, и может быть использовано для лечения осложнений, вызванных герпетическим менингоэнцефалитом

Изобретение относится к области медицины, а именно к лабораторным методам исследования

Изобретение относится к области биотехнологии и медицины
Изобретение относится к технологии получения биоцидных добавок для использования в лакокрасочной промышленности для окраски различных поверхностей (дерево, бетон, кирпич и др.), в частности в водноэмульсионных красках для внутренней отделки помещений с повышенной влажностью (овощехранилищ, бассейнов, санузлов и т.д.) и мест скопления людей (больницы, детские учреждения, метро и т.д.), Биоцидная добавка для водоэмульсионных красок, содержащая шунгит-серебряный нанокомпозит в соотношении шунгит: серебро 2:1 по массе

Изобретение относится к области биотехнологии, конкретно к получению клеточных популяций, и может быть использовано в клеточной трансплантологии и тканевой инженерии с целью получения клеточного материала для восстановления нервной ткани, поврежденной в результате травм, инсультов или нейродегенеративных заболеваний

Изобретение относится к области генной инженерии и может быть использовано для диагностики геномных изменений в клеточных линиях млекопитающих, происходящих при увеличении количества пассирований клеточных культур, необходимых для наращивания материала в медицине

 


Наверх