Патенты автора Новоселов Андрей Рудольфович (RU)

Изобретение относится к оптоэлектронике, нано- и микроэлектронике и может быть использовано для создания мозаичных фотоприемников (МФП) сверхвысокой размерности, в том числе мультиспектральных. В МФП сверхвысокой размерности с предельной эффективностью преобразования изображений, состоящем из матрицы n×m бескорпусных фотоприемных субмодулей, для уменьшения количества потерянных элементов в "слепой зоне", обеспечения компактности конструкции и расширения области применения бескорпусные субмодули изготовлены с обеспечением минимальных областей повреждения на стыкуемых краях кристаллов субмодулей, субмодули размещены на единственной пластине-носителе с минимальными зазорами или без зазоров. Предложены варианты исполнения области стыковки смежных субмодулей и МФП в целом. В способе изготовления МФП сверхвысокой размерности с предельной эффективностью преобразования изображений для увеличения точности позиционирования субмодулей, повышения технологичности способа изготовления и снижения себестоимости МФП дополнительное прецизионное формирование стыкуемых граней кристаллов субмодулей с обеспечением минимальных (5-8 мкм) областей повреждения выполняют определенным образом, установку субмодулей на единственную пластину-носитель с отверстиями осуществляют с помощью вакуумных захватов и микроманипуляторов с минимальными (≤2 мкм) зазорами или без зазоров. Предложены варианты способов создания МФП сверхвысокой размерности с предельной эффективностью преобразования изображений. Полученные результаты могут быть применимы и при создании мозаичных излучателей, состоящих из заданной комбинации субмодулей-излучателей различных диапазонов. 4 н. и 19 з.п. ф-лы, 78 ил., 1 табл.

Изобретение относится к полупроводниковой технологии и предназначено для сборки мозаичных фотоприемных модулей. В способе формирования граней чипа для мозаичных фотоприемных модулей наносят защитное покрытие на планарную сторону приборной пластины, после чего, используя лазер, производят скрайбирование и осуществляют раскалывание приборной пластины. Защитное покрытие наносят толщиной, обеспечивающей поглощение лазерного излучения с плотностью энергии меньшей порога плавления в материале защитного покрытия и препятствование его воздействия на полупроводниковый материал. Скрайбирование, формирующее грань, осуществляют с использованием многопроходного режима. В каждом проходе приборной пластины скорость ее движения выбирают из условия отсутствия на поверхности больших зон расплава материала за счет перекрытия световых пятен от импульсного излучения, а также отсутствия уменьшения ширины канавки за счет осаждения расплава. При скрайбировании формируют канавку симметричной V-образной формы, направляя излучение по нормали к поверхности приборной пластины и получая канавку со стенками, образующими с поверхностью приборной пластины тупой угол α, или асимметричной V-образной формы, путем отклонения оптической оси лазерной системы, генерирующей требуемое излучение для скрайбирования, от нормали к поверхности приборной пластины в поперечном направлении формируемой канавки, получая канавку со стенкой со стороны чипа, образующей с поверхностью приборной пластины угол менее величины α и не более 180°-α. В результате достигается повышение эффективности преобразования изображений в мозаичном фотоприемном модуле и расширение области его применения. 5 з.п. ф-лы, 9 ил., 2 пр.

Изобретение относится к технологии изготовления полупроводниковых приборов, их гибридной сборке и преимущественно предназначено для сборки фотоприемных модулей

 


Наверх