Патенты автора Никонов Вадим Сергеевич (RU)

Группа изобретений относится к области дегазации токсичных химикатов и может быть использована в чрезвычайных ситуациях, при ликвидации аварий, для дегазации лабораторной посуды, инструментов, аппаратуры, вытяжных шкафов, поверхностей, рабочих площадок временного хранения производственных отходов, средств индивидуальной защиты, растворов, реакционных масс. Концентрат органической дегазирующей рецептуры включает хлорбензол, ε-капролактам, гидроксид калия и изобутилат калия при следующем соотношении компонентов, мас.%: хлорбензол - 30,9-38,6, ε-капролактам - 13,6-17,0, гидроксид калия - 2,0-3,0, изобутилат калия - остальное. Для получения концентрата осуществляют взаимодействие жидкофазного компонента в виде раствора изобутилата калия в изобутиловом спирте в соотношении 40:60 массовых частей с ε-капролактамом и хлорбензолом в соотношении 11:25 массовых частей при перемешивании до полного растворения. Производят отгонку из полученного раствора 60 массовых частей изобутилового спирта при давлении в интервале от 170 до 220 мм рт. ст. и температуре от 60 до 75°С. Обеспечивается длительность хранения композиции и возможность растворения в органических апротонных растворителях. 2 н.п. ф-лы, 9 табл.

Изобретение может быть использовано для приготовления хлорсодержащего водного дегазирующего раствора в авторазливочных станциях АРС-14, АРС-14К, АРС-14КМ при ликвидации чрезвычайных ситуаций на химически опасных объектах. Способ приготовления дегазирующего раствора гипохлорита кальция включает смешивание и растворение в воде 1,5% по массе гипохлорита кальция в авторазливочных станциях. Перераспределение твердой фазы осуществляют в результате движения потока атмосферного воздуха с величиной межфазной поверхности от 1,2 до 1,8 м2 через приготовляемый раствор. Атмосферный воздух подают в течение 5 мин из аппарата перфорированных патрубков, содержащих от 30 до 45 выходных отверстий диаметром 1 мм. Изобретение позволяет сократить сроки приготовления дегазирующего раствора. 2 ил.

Изобретение относится к области анализа воды физическими и химическими методами и может быть использовано для контроля качества воды при решении задач химической разведки и экологического мониторинга на объектах бытового, промышленного и специального назначения. Устройство контроля качества воды в стационарных и полевых условиях состоит из резервуара (источника водной среды), контрольной кюветы, двух насосов, четырех двухходовых клапанов, газоанализатора, двух фильтров, фотоколориметра, трех датчиков жидкости, устройства контроля общих показателей воды, индикатора радиоактивности и рентгенофлуоресцентного спектрометра. Устройство контроля общих показателей воды включает установленные внутри контрольной кюветы электроды О2, рН, ОВП, а индикатор радиоактивности расположен в непосредственной близости к контрольной кювете. Изобретение обеспечивает повышение глубины контроля качества воды в стационарных и полевых условиях. 1 ил.
Изобретение относится к области экологии, в частности к сорбционной очистке водных растворов от токсичных соединений фторангидрида метилфторфосфоновой кислоты CH3POF2, цианидов и мышьяковистых соединений, и может быть использовано в фильтрах для очистки воды коллективного пользования и в полевых средствах водообеспечения. Предложен активированный углеродный волокнистый материал, представляющий собой высокопористое углеродное волокно на основе углеродной ткани типа БУСОФИТ Т-55, состоящее из тонких нитей диаметром от 5 до 15 мкм, образованных преимущественно атомами углерода, при этом активированный углеродный волокнистый материал содержит оксид меди в количестве 2,0-3,0% мас. и гидроксид железа в количестве 12,0-14,0% мас. Способ получения активированного углеродного волокнистого материала включает приготовление пропиточного раствора путем разбавления концентрированного раствора солей железа и меди дистиллированной водой, подогретой до 30-40°С из расчета 0,340 кг/дм3 хлорного железа и 0,06 кг/дм3 сульфата меди, загрузку активированного углеродного материала в аппарат для перемешивания, пропитку сорбционной ткани приготовленным раствором при его перемешивании в течение 10-15 мин в пропиточном растворе, подогретом до 55-70°С и взятом в количестве, равном 0,35 кг/дм3 к загруженной активной ткани, последующую обработку раствором гидроксида натрия с концентрацией 10% мас. для осаждения соединений железа и меди, выгрузку продукта на вылеживание на открытом воздухе в течение 1,5-2,0 ч, термическую обработку в печи со щелевидной ретортой при температуре 120°С в течение 40-70 мин, при этом предварительно углеродный волокнистый материал подвергают активации путем карбонизации в присутствии пара при температуре 900°С со скоростью протяжки 5-8 м/ч и расходом пара 12-14 л/ч с получением активированного углеродного материала со степенью активации 40-50%, который далее стирают в воде с использованием моечных машин барабанного типа в 3-5 приемов в течение 9-25 мин и высушивают при 120-150°С в течение 2-5 ч. Количество вводимых добавок обеспечивает равное время защитного действия от различных типов токсичных загрязнений воды, при этом сокращается количество операций и растворов при получении данного материала. Полученный материал имеет повышенную по сравнению с существующими гранулированными сорбентами адсорбционную активность по извлечению из воды фторангидрида метилфторфосфоновой кислоты, равную 1,6 мг/г, цианидов - 2,1 мг/г и мышьяковистых соединений - 2,3 мг/г. 2 н.п. ф-лы, 1 пр.

Изобретение относится к cпособу контроля паров компонентов жидкого ракетного топлива в воздухе на основе полупроводниковых газочувствительных сенсоров, заключающемуся в том, что устанавливают для каждой примеси несимметричного диметилгидразина и тетраоксида азота соответствующую мощность нагрева газочувствительных сенсоров, через камеру с установленными аналитическими каналами с заданными мощностями нагрева пропускают определенный объем воздуха, измеряют напряжение на каждом сенсоре, обрабатывают результаты измеренных напряжений, определяют содержание паров компонентов жидких ракетных топлив в воздухе, характеризующемуся тем, что идентифицируют компоненты жидких ракетных топлив с помощью набора сенсоров в составе SnO2:Sb2O3:Ag, SnO2:Sb2O3:Ni, SnO2:Sb2O3:Fe и SnO2:Sb2O3:Zn, скомпонованных в мультисенсорную систему, управление которой осуществляется с помощью микропроцессора, нагревают сенсоры SnO2:Sb2O3:Ag, SnO2:Sb2O3:Zn, которые реагируют на наличие примеси тетраоксида азота в воздушном потоке, при подаче тока с мощностью 150 мВт, а сенсоры SnO2:Sb2O3:Ni, SnO2:Sb2O3:Fe, которые обнаруживают примеси несимметричного диметилгидразина при подаче тока с мощностью 350 мВт. Технический результат заключается в повышении достоверности контроля, чувствительности, селективности, стабильности за счет применения системы газочувствительных сенсоров (SnO2:Sb2O3:Ag, SnO2:Sb2O3:Ni, SnO2:Sb2O3:Fe и SnO2:Sb2O3:Zn), отсутствия дополнительных мероприятий, отсутствия использования расходных материалов при проведении контроля. 3 ил.

Изобретение относится к области газового анализа, в частности к детектирующим устройствам, применяемым для регистрации и измерения различных веществ в газовой среде. Газочувствительный детектор содержит плату-носитель с размещенными на ней n микрочипами, расположенными по периметру платы-носителя относительно друг друга с равными промежутками, каждый микрочип включает диэлектрическую подложку, при этом на фронтальной стороне диэлектрической подложки размещены соединенные между собой газочувствительный слой и контактные площадки, на обратной стороне диэлектрической подложки размещены соединенные между собой нагревательный элемент и контактные площадки нагревательного элемента. Изобретение обеспечивает повышение селективности обнаружения соединений, составляющих запах, за счет возможности использования необходимого количества микрочипов, которые могут менять аналитические свойства различных веществ в газовой среде при различных температурах нагрева, тем самым формируя уникальные образы для широкого класса веществ различных групп химических соединений. 3 ил.

Изобретение относится к области анализа небиологических материалов физическими и химическими методами и может быть использовано при решении задач химической разведки и (или) экологического мониторинга на объектах бытового, промышленного и специального назначения. Способ заключается в том, что при определении массовой концентрации веществ формируют систему контроля веществ в водных растворах, тестируют газочувствительные элементы, проводят отбор проб и измеряют концентрацию насыщенного пара. Проводят газовый анализ паров веществ, испаряемых над поверхностью воды, в соответствии с их составом и концентраций в растворе, формируют уравнение связи аналитического сигнала с концентрацией целевых веществ в паровой фазе и проводят расчет содержания веществ, растворенных в воде. Достигается повышение чувствительности, быстродействия, селективности, достоверности контроля, а также специфичности, компактности и отсутствие дополнительных расходных материалов за счет возможности измерения концентрации вещества, диффундирующего из раствора через поверхность раздела фаз с давлением насыщенного пара, зависящего от концентрации вещества в растворе и температуры раствора. 1 пр., 1 табл., 5 ил.

Изобретение относится к противогазовой технике, устройству и способу контроля технического состояния фильтра, и может быть использовано при разработке и эксплуатации фильтров противогазов. Устройство контроля технического состояния фильтра противогаза состоит из фильтра противогаза, внутри которого размещена шихта, источника микропотоков, первого распределителя двухходового, насоса мембранного, камеры измерительной, второго распределителя двухходового, входного фильтра, причем выход источника микропотоков соединен с входом фильтра противогаза и первым входом первого распределителя двухходового, выход фильтра противогаза соединен со вторым входом первого распределителя двухходового, выход которого соединен с первым входом второго распределителя двухходового, второй вход которого соединен с выходом входного фильтра, выход второго распределителя двухходового соединен с входом камеры измерительной, выход которой соединен с входом насоса мембранного. Техническим результатом является повышение чувствительности, селективности, стабильности метода и увеличение достоверности результатов измерений. 2 н.п. ф-лы, 3 ил.

Изобретение относится к области экологии. Предложен сорбент, полученный на основе угля из косточкового сырья. Способ получения сорбента включает приготовление пропиточного раствора путём разбавления концентрированного раствора солей железа и меди дистиллированной водой, подогретой до 30-40°С, из расчета 0,340 кг/дм3 хлорного железа и 0,06 кг/дм3 сульфата меди. Активный уголь фракции 0,315-1,0 мм пропитывают приготовленным раствором, подогретым до 55-70°С, при перемешивании в течение 10-15 минут. Далее осуществляют обработку пропитанного угля раствором гидроксида натрия для осаждения соединений железа и меди. Продукт подвергают вылеживанию на открытом воздухе в течение 1,5-2,0 часов. Проводят термическую обработку продукта в печи кипящего слоя или во вращающейся печи при температуре 120-145°С в течение 40-70 минут, обеспечивая содержание влаги в сорбенте не более 3% мас. Технический результат: повышение сорбционной способности модифицированного угля по токсичным соединениям метилфторфосфоновой кислоты, цианидам и мышьяковистым соединениям. 2 н.п. ф-лы, 4 табл.

Изобретение относится к области дегазации и дезинфекции поверхностей вооружения и военной техники (ВВТ), зараженных токсичными химикатами (ТХ) и биологическими средствами (БС), а именно к созданию бифункциональных рецептур, обладающих дегазирующими и дезинфицирующими свойствами. Бифункциональная рецептура может применяться как при отрицательных, так и при положительных температурах окружающего воздуха. Рецептура включает хлорактивный препарат - трихлоризоциануровую кислоту (ТХИЦК), растворяемый в зимних условиях в ацетонитриле, а в летних условиях в воде совместно с кальцинированной содой в массовом соотношении 1:1 и применяемый в виде 1-2 мас.% раствора для дегазации и 3-4 мас.% раствора для дезинфекции. Данный состав относительно прост и содержит доступные компоненты, а применение бифункциональной рецептуры для дегазации и дезинфекции объектов ВВТ в виде водного раствора при положительных температурах значительно упрощает вопросы снабжения войск рецептурами и сокращает объем их перевозок. 1 ил., 2 табл.
Изобретение относится к способу получения сорбентов, предназначенных для очистки питьевой воды. Способ получения сорбента включает приготовление пропиточного раствора, пропитку зерен активного угля и термическую обработку. Обработке подвергают активный уголь с насыпной плотностью 750-850 г/дм3, с размером микропор 1,50-1,60 нм, с размером зерен 0,2-1,0 мм. Пропитку осуществляют аммиачным раствором углекислой основной меди. Содержание меди в подученном сорбенте составляет 1,4-1,8 мас.% в пересчете на медь. Сорбент, полученный по предлагаемому способу, имеет активность по извлечению из воды цианида натрия 0,15-0,20 мг/г. 1 з.п. ф-лы, 3 пр.

Изобретение относится к средствам дегазации объектов по уничтожению химического оружия (ОУХО). Предложена рецептура, при заблаговременном нанесении которой на наружные и внутренние поверхности технологических помещений ОУХО позволяет создать на них защитный слой для обеспечения безопасной эксплуатации объектов. Рецептура самодегазирующего покрытия включает в качестве пленкообразователя уретан-алкидный лак и в качестве наполнителя - интерполиэлектролитный комплекс, представляющий собой продукт взаимодействия 4,0 мас.% раствора катионного полиоснования - хитозана в 6,0 мас.% водном растворе уксусной кислоты с 0,1 мас.% водным раствором порошка СФ-2У. Покрытие обеспечивает быстрое впитывание жидкой фазы физиологически активных веществ (ФАВ), исключая возможность заражения средств индивидуальной защиты при контакте личного состава с зараженными поверхностями, тем самым обеспечивает безопасную эксплуатацию ОУХО, зараженных не только ФАВ фосфорорганического ряда, но и галогенированными тиоэфирами. 1 табл.

Изобретение относится к области безопасной эксплуатации химически опасных объектов, а именно к разработке состава рецептуры, обеспечивающей дегазацию токсичных химикатов (ТХ) при ликвидации последствий чрезвычайных ситуаций на химически опасных объектах. Поставленная задача решается разработкой состава водной пенообразующей рецептуры, в который входят следующие компоненты в соотношении, мас.%: пенообразующая композиция - 0,3-1,7, Na-соль дихлоризоциануровой кислоты - 2,5-6,5, вода - остальное. Пенообразующая композиция включает смесь из первичных жирных спиртов и функциональных добавок, а также бутилдигликоль, пропиленгликоль и воду при следующем соотношение компонентов, мас.%: смесь из 3-этаноламинаалкилсульфата первичных жирных спиртов ряда C8-С12, первичных спиртов жирного ряда С12-С14, сульфаэтоксилата натрия и карбамида - 40,0, бутилдигликоль - 5,0, пропиленгликоль - 3,0, вода - остальное. Изобретение обеспечивает дегазацию ТХ при ликвидации последствий чрезвычайных ситуаций на химически опасных объектах. 1 табл.
Изобретение относится к области безопасной эксплуатации химически опасных объектов (ХОО), а именно к разработке состава рецептуры, обеспечивающей дегазацию летучих токсичных фосфорорганических веществ внутри технологических помещений не только на поверхностях, но и в воздухе в виде паровой фазы
Изобретение относится к области безопасной эксплуатации объектов по уничтожению химического оружия (ОУХО), а именно к созданию дегазирующих рецептур для нанесения на внешние и внутренние поверхности ОУХО и формирования на них самодегазирующего покрытия, обеспечивающего безопасную эксплуатацию объектов при многократном заражении физиологически-активными веществами (ФАВ)
Изобретение относится к способу получения сорбентов, предназначенных для очистки питьевой воды, и может быть использовано для очистки питьевой воды в домашних условиях, в фильтрах для очистки воды коллективного пользования, системах очистки в полевых условиях

 


Наверх