Патенты автора Иванова Алла Владимировна (RU)

Изобретение относится к области физико-химических методов анализа, в частности к анализу растворов на предмет количественного определения антиоксидантной емкости. Изобретение может быть использовано для анализа пищевых объектов и объектов фармации и заключается в потенциометрическом способе определения антиоксидантной емкости с использованием 2,2'-дифенил-1-пикрилгидразила, характеризующегося тем, что предварительно смешивают исходный раствор 2,2'-дифенил-1-пикрилгидразила с концентрацией СDPPH⋅ в растворителе и анализируемый раствор, в который после смешения добавляют электролит и измеряют потенциал E1, вводят первую добавку 2,2'-дифенил-1-пикрилгидразила с концентрацией С'DPPH⋅ и измеряют потенциал E2, вводят вторую добавку 2,2'-дифенил-1-пикрилгидразила с концентрацией С''DPPH⋅ и измеряют потенциал E3, антиоксидантную емкость анализируемого раствора AOEDPPH⋅ находят решением системы уравнений. Техническим результатом изобретения является разработанный метод потенциометрии, позволяющий проводить анализ объектов с собственной окраской любой интенсивности. Варьированием концентраций исходного DPPH• и последовательных добавок достигается существенное расширение интервалов определяемых концентраций и уменьшение погрешности определения. 3 з.п. ф-лы, 5 ил., 3 пр.

Изобретение относится к биотехнологии, медицине и молекулярной биологии, в частности к конструированию in vitro ДНК-конструкции pET21-VP40VE, содержащей ген матриксного белка VP40 вируса Эбола (штамм Zaire, изолят Mayinga) и рекомбинантному белку VP40-ВЭ, обладающему иммуногенными и антигенными свойствами. Рекомбинантная плазмидная ДНК pET21-VP40VE предназначена для экспрессии гена матриксного белка VP40 вируса Эбола (штамм Zaire, изолят Mayinga) в прокариотической системе E.coli и получения рекомбинантного белка VP40-VE, которая имеет размер 6366 п.н. и содержит в своем составе: ген bla (координаты с 599 по 1459 п.н.) в качестве генетического маркера, определяющего устойчивость к ампициллину клеток бактерии E.coli (BL21/DE3(+), трансформированных рекомбинантной плазмидой pET21-VP40VE; участок начала репликации ori (координаты с 1630 по 2218 п.н.); промотор фага T7 (координаты с 5117 по 5135 п.н.); лактозный репрессор (координаты с 3648 п.н. по 4730 п.н.); ДНК-связывающий белок, который ингибирует экспрессию генов E.coli и обеспечивает экспрессию целевого рекомбинантного белка VP40-ВЭ; уникальные сайты узнавания рестрикционными эндонуклеазами, имеющие следующие координаты: NheI (5204 п.н.) и XhoI (6205 п.н.); ген VP40 ВЭ (штамм Zaire, изолят Mayinga) (981п.н.), встроенный в экспрессионную кассету по сайтам рестрикции NheI (5204 п.н.) и XhoI (6205 п.н.) (с 4479 по5459 нуклеотид геномной РНК), который кодирует 327 аминокислотных остатков (а.о.) вирусного матриксного белка VP40; последовательность (18 п.н.), кодирующая полигистидиновый (6xHis) политракт из шести гистидинов на N-конце кодируемого белка для последующей очистки его с помощью метода аффинной Ni-хроматографии. Рекомбинантный белок VP40-ВЭ получен в результате экспрессии гена матриксного белка VP40 вируса Эбола (штамм Zaire, изолят Mayinga) в бактериальной системе экспрессии E.coli в составе рекомбинантной ДНК-конструкции pET21-VP40VE, имеющий молекулярную массу 36114,68 Да и аминокислотную последовательность SEQ ID NO:1 длиной 333 а.о., включая 6 гистидинов и стоп-кодон, и обладающий иммуногенными и антигенными свойствами и предназначенный для индукции в организме мышей линии Balb/c антител, узнающих в иммунохимических реакциях вирусный белок VP40-BE, а также взаимодействующий с мышиными моноклональными антителами, поликлональными козьими и человеческими антителами, специфичными к инактивированному и инфекционному вирусу Эбола. Изобретение позволяет повысить выход целевого рекомбинантного матриксного белка VP40-ВЭ. 2 н.п. ф-лы, 14 ил., 3 табл., 8 пр.

Изобретение относится к области биотехнологии. Изобретение представляет собой рекомбинантную плазмидную ДНК pET21-NPVE предназначенную для экспрессии гена нуклеопротеина NP вируса Эбола (штамм Zaire, изолят Mayinga) в прокариотической системе E.coli и получения рекомбинантного белка NP-ВЭ, имеет размер 7593 п.н. и содержит в своем составе: ген bla (координаты с 599 по 1459 п.н.) в качестве генетического маркера; участок начала репликации ori (координаты с 1630 по 2218 п.н.); промотор фага T7 (координаты с 5117 по 5135 п.н.; лактозный репрессор (координаты с 3648 п.н. по 4730 п.н.); ДНК-связывающий белок, который ингибирует экспрессию генов E.coli и обеспечивает экспрессию целевого рекомбинантного белка NP-ВЭ после добавления индуктора изопропил-β-D-1-тиогалактопиранозида (IPTG); уникальные сайты узнавания рестрикционными эндонуклеазами, имеющие следующие координаты: NheI (5209 п.н.) и XhoI (7432 п.н.); полноразмерный ген NP вируса Эбола (изолят Mayinga, штамм Zaire) 2217 п.н. (с 470 по 2686 нуклеотид геномной РНК), встроенный в экспрессионную кассету по сайтам рестрикции NheI (5209 п.н.) и XhoI (7432 п.н.), который кодирует 739 аминокислотных остатков (а.о.) вирусного нуклеопротеина; последовательность (18 п.н.), кодирующая полигистидиновый (6xHis) политракт из шести гистидинов на N-конце кодируемого белка для последующей очистки его с помощью метода аффинной Ni-хроматографии и рекомбинантный белок NP-ВЭ полученный в результате экспрессии гена нуклепротеина NP вируса Эбола (штамм Zaire, изолят Mayinga) в бактериальной системе экспрессии E.coli в составе рекомбинантной ДНК-конструкции pET21-NPVE, имеющий расчетную молекулярную массу 84457,42 Да, и аминокислотную последовательность SEQ ID NO: 1 длиной 748 а.о., включая 6xHis, и стоп-кодон, и обладающий иммуногенными и антигенными свойствами, и предназначенный для индукции в организме мышей линии Balb/c антител, узнающих в иммунохимических реакциях вирусный белок NP-ВЭ, а также взаимодействующий с мышиными моноклональными антителами, поликлональными козьими и человеческими антителами, специфичными к инактивированному и инфекционному вирусу, соответственно. Изобретение позволяет повысить выход целевого рекомбинантного белка NP-ВЭ. 2 н.п. ф-лы, 3 табл., 14 ил.

Изобретение относится к области фармацевтической и аналитической химии и может быть использовано в фармацевтической промышленности для контроля технологических процессов и качества фармпрепаратов, а также - сточных вод и воздушной зоны химико-фармацевтических предприятий. Сущность способа основана на способности триазида восстанавливаться на различных типах графитовых электродов и заключается в переводе триазида из пробы в водный раствор и в прямом (без предварительного накопления на электроде) вольтамперометрическом определении в ней триазида на фоне буферной смеси Бриттона-Робинсона рН=7 в присутствии 0,01 М сульфита натрия регистрацией катодных пиков в квадратно-волновом режиме съемки вольтамперограмм в интервале от (-0,4) до (-1,4) В при скорости развертки потенциала 150 мВ/с, амплитуде импульса 50 мВ. Концентрацию триазида определяют по высоте пика в диапазоне потенциалов от (-0,60) до (-1,0) В относительно хлоридсеребряного электрода методом добавки стандартного раствора триазида. Достигается чувствительность и экспрессность анализа. 1 табл., 6 ил.

Изобретение относится к области электрохимических методов анализа, в частности к анализу растворов на предмет определения суммарной антиоксидантной емкости. Изобретение касается способа определения антиоксидантной емкости раствора с использованием потенциометрического метода, в котором предварительно готовят исходный фосфатный буферный раствор, в который вводят систему, содержащую одновременно окисленную и восстановленную формы металла в составе комплексного соединения K3[Fe(CN)6]/K4[Fe(CN)6], а оценку антиоксидантной емкости проводят по изменению окислительно-восстановительного потенциала раствора, измеренного между рабочим платиновым электродом и хлорид-серебряным электродом сравнения, зарегистрированным до и после введения в исходный раствор анализируемого вещества. Из общей антиоксидантной емкости раствора выделяют восстанавливающую и хелатирующую емкости, при этом восстанавливающую емкость предварительно определяют методом потенциометрического титрования окисленной формой реагента (K3[Fe(CN)6. Хелатирующую емкость определяют как разницу между антиоксидантной емкостью и восстанавливающей емкостью. Технический результат - получение достоверной количественной информации о восстанавливающих и хелатирующих свойствах исследуемых объектов с антиоксидантным действием, а также повышение точности и достоверности получаемых результатов. 3 пр., 6 ил.

Изобретение относится к области физико-химических методов анализа, в частности к анализу растворов на предмет определения антиоксидантной активности. Изобретение может быть использовано в научно-исследовательских лабораториях для изучения антиоксидантных свойств различных природных, синтетических и биологических объектов. Сущность заявляемого способа заключается в том, что определение антиоксидантной активности проводят по изменению потенциала, регистрируемого при взаимодействии термически генерируемых радикалов с исследуемым образцом в растворе. Задачей, решаемой данным изобретением, служит повышение точности, достоверности и воспроизводимости результатов, расширение круга исследуемых веществ, а также получение данных в универсальных единицах измерения, что позволяет проводить сравнительный анализ как индивидуальных соединений, так и сложных объектов. 2 з.п. ф-лы, 8 ил., 4 пр.

Изобретение относится к области физико-химических методов анализа, в частности к анализу растворов на предмет количественного определения антиоксидантной активности (АОА). Сущность заявляемого способа заключается в том, что определение АОА проводят по разности количества парамагнитных частиц стабильного радикала, измеряемых до и после прохождения химической реакции частиц радикала с антиоксидантами (АО). Задача настоящего изобретения состоит в преодолении недостатков известных способов и в создании нового способа, позволяющего повысить точность и экспрессность определения, а также позволяющего количественно в стандартизированных единицах установить АОА определяемого вещества в исследуемом образце и механизм взаимодействия АО со свободными радикалами дифенилпикрилгидразила (ДФПГ). 4 ил., 4 пр.

Изобретение относится к области аналитической химии, в частности к вольтамперометрическому способу определения лекарственного препарата триазавирина. Способ может быть использован для количественного определения указанного соединения в порошке и его лекарственных формах. Изобретение может быть использовано в фармацевтической промышленности для контроля технологических процессов и качества фармпрепаратов, сточных вод и воздушной зоны химико-фармацевтических предприятий, в лабораториях фармацевтического контроля для определения действующих веществ лекарственных средств. Сущность изобретения основана на способности триазавирина восстанавливаться на различных типах графитовых электродов и заключается в переводе триазавирина из пробы в водный раствор и прямом (без предварительного накопления на электроде) вольтамперометрическом определении в ней триазавирина на фоне 0,1 моль/л азотной кислоты с регистрацией катодных пиков в квадратно-волновом режиме съемки вольтамперограмм в интервале от 0,2 до (-0,6) В при скорости развертки потенциала 160 мВ/с. Концентрацию триазавирина определяют по высоте пика в диапазоне потенциалов от 0,10 до (-0,40) В относительно хлоридсеребряного электрода методом добавки стандартного раствора триазавирина. Изобретение обеспечивает возможность создания чувствительного и экспрессного способа количественного определения триазавирина методом вольтамперометрии в субстанции и лекарственной форме для обеспечения контроля качества лекарственного средства. 2 н.п. ф-лы, 1 ил., 3 табл., 2 пр.

Изобретение относится к новому способу определения скорости генерирования пероксильных радикалов. Технический результат: разработан новый способ определения скорости генерирования пероксильных радикалов, который повышает точность, достоверность и воспроизводимость результатов, а также расширяет круг исследуемых веществ и используемых реагентов. 1 з.п. ф-лы, 4 ил., 1 пр.

Изобретение относится к биологи и медицине, а именно к иммуноанализу, в частности к электрохимическим способам определения содержания вирусов/антигенов вирусов кори. Изобретение включает образование иммунокомплекса по схеме «сэндвич» между антителами и вирусом/антигеном вируса кори с последующим присоединением конъюгата антител с сигналообразующей меткой, причем в качестве сигналообразующей метки используют магнитные нанокомпозитные частицы, которые перед стадией образования иммунокомплекса получают путем создания на поверхности магнитных наночастиц оксида переходного металла оксидкремниевого покрытия с последующим получением конъюгата с антителами, при этом формирование иммунокомплекса осуществляют путем его концентрирования на твердофазном химически инертном носителе за счет воздействия магнитным полем с последующим изъятием этого иммунокомплекса из среды, сформированной на носителе, а определение наличия и концентрации вируса/антигена вируса осуществляют по сигналу, генерируемому ионами переходного металла, образующимися в результате кислотной обработки иммунокомплекса. Настоящее изобретение направлено на упрощение процесса анализа, увеличение экспрессности и воспроизводимости. 2 з.п. ф-лы, 4 ил., 3 пр.

Изобретение относится к области электрохимических методов анализа, в частности к анализу растворов на предмет определения суммарной антиоксидантной/оксидантной активности. Изобретение может быть использовано в исследовательских лабораториях, пищевой промышленности, медицине для определения антиоксидантной/оксидантной активности природных, синтетических и биологических объектов для исследования антиоксидантных/оксидантных свойств веществ и продуктов, контроля состава пищевых продуктов, диагностики заболеваний. Сущность заявляемого способа заключается в том, что определение антиоксидантной/оксидантной активности проводят по разности потенциалов, один из которых измеряется после прохождения химической реакции между антиоксидантами/оксидантами анализируемого вещества и используемым реагентом, а второй - после следующей добавки раствора реагента или анализируемого вещества. Изобретение обеспечивает повышение точности, достоверности и воспроизводимости результатов, увеличение экспрессности анализа, расширение круга анализируемых веществ, используемых реагентов и растворителей. 2 з.п. ф-лы, 6 ил., 6 пр.

Использование: для контроля состава природных, сточных вод, биологических объектов, пищевых продуктов, диагностики заболеваний в химической, металлургической, пищевой промышленности, медицине, экологии. Сущность: способ изготовления модифицированного электрода включает синтез на поверхности графитсодержащего слоя наноструктурированного труднорастворимого соединения (модификатора) с последующим электрохимическим формированием рабочей поверхности электрода. Наноструктуирование модификатора осуществляется за счет использования углеродных наноматериалов. Технический результат: упрощение технологии изготовления электродов, ее удешевление, расширение спектра определяемых веществ, улучшение метрологических характеристик, увеличение продолжительности жизни и срока хранения, расширение возможностей использования. 2 н. и 6 з.п. ф-лы, 8 ил., 1 табл.

 


Наверх