Патенты автора Балдаев Сергей Львович (RU)

Изобретение относится к способам получения антикоррозионного металлополимерного покрытия и может быть использовано в нефтегазовой отрасли, в частности на металлических рабочих поверхностях колонного и емкостного оборудования, аппаратов и т.п., применяемых при добыче, транспортировке и переработке природного газа и других углеводородов. Способ получения антикоррозионного металлополимерного покрытия включает последовательное нанесение на подготовленную абразивно-струйной обработкой металлическую поверхность методом электродуговой металлизации металлического слоя и последующее нанесение поверхностного полимерного покрытия, при этом сначала наносят металлический слой из коррозионно-стойкого металла или сплава толщиной 100-1000 мкм, затем металлизационную струю отключают и наносят поверхностный полимерный слой покрытия толщиной 50-200 мкм, при этом полимер наносят в виде жидкости, а временной промежуток между нанесением металлического и полимерного слоев составляет 3-30 минут. Изобретение направлено на повышение эксплуатационных свойств покрытий за счет увеличения их антикоррозионной стойкости и проведения процесса нанесения металлополимерного покрытия в одном технологическом цикле. 1 пр.
Изобретение относится к способам получения покрытий для защиты от биообрастания корпусов судов и гидротехнических сооружений, устройств, конструкций, эксплуатирующихся в морской среде. Предложен способ получения покрытия с низкой поверхностной энергией против биообрастания на металлических поверхностях, включающий последовательное нанесение на поверхность металлического подслоя и поверхностного слоя, при этом дополнительно наносят переходный металлополимерный слой, причем сначала электродуговым напылением наносят металлический подслой из цинк-алюминий-магниевого сплава толщиной 100-1000 мкм, затем в металлизационную струю инжектируют полимерный компонент, таким образом, чтобы получить переходное металлополимерное покрытие, после чего отключают металлизационную струю и наносят поверхностный полимерный слой толщиной 50-200 мкм с использованием полимерного компонента, затем проводят термообработку покрытия газовым пламенем до температуры 360-380°C, при этом в качестве полимерного компонента используют фторпластовую суспензию. Технический результат: снижение энергозатрат на реализацию способа получения покрытий, отсутствие ограничений по площади нанесения покрытий, повышение эксплуатационных характеристик создаваемых покрытий.
Изобретение может быть использовано при нанесении покрытий на металлические поверхности трапов, лестниц, мостиков, пешеходных дорожек, автомобильных пандусов, вертолетных площадок, палуб судов. Способ получения нескользящего покрытия включает подготовку поверхности и нанесение полимерного покрытия. Подготовку поверхности проводят абразивно-струйной обработкой. Затем последовательно наносят способом электродуговой металлизации металлический подслой из алюминий-магниевого сплава толщиной 100-1000 мкм и слой из полимерно-абразивной композиции толщиной 300-1000 мкм, инжектируя ее на предварительно подогретый газовым пламенем до температуры 150-200°С металлический подслой с сопутствующим подогревом газовым пламенем образующегося покрытия. В качестве полимерного материала используют термопластичный порошковый материал. Абразивный материал используют фракцией 0,1-3 мм. После чего отключают инжектирование полимерно-абразивной композиции и проводят термообработку покрытия газовым пламенем до температуры плавления полимерной составляющей. Полученные покрытия отличаются повышенными эксплуатационными характеристиками, такими как механическая стойкость к истиранию, высокая сила трения покоя. 1 пр.

Изобретение относится к области авиадвигателестроения, в частности к конструкции деталей и сборочных единиц (ДСЕ) соплового аппарата турбины высокого давления (СА ТВД) газотурбинного двигателя, преимущественно для высокоманевренных самолетов. Деталь сборочной единицы соплового аппарата турбины высокого давления изготовлена из жаропрочного и жаростойкого сплава на основе никеля с теплозащитным покрытием, содержащим металлический подслой, керамический подслой и верхний керамический слой, при этом металлический подслой толщиной от 35 до 130 мкм выполнен плазменным напылением порошкового сплава на основе никеля, содержащего 18-25% кобальта, 13-22% хрома, 10-15% алюминия и 0,1-0,9 иттрия, причем объемная пористость и объемное содержание включений оксидов в слое в сумме составляют не более 7%, керамический подслой толщиной от 120 до 220 мкм выполнен плазменным напылением порошкового материала на основе диоксида циркония, содержащего 7,5-11,5% оксида диспрозия, при этом пористость слоя составляет от 5 до 20%, а верхний керамический слой толщиной от 30 до 130 мкм выполнен плазменным напылением порошкового материала на основе диоксида циркония, содержащего 45-65% оксида гадолиния, при этом пористость слоя составляет от 5 до 20%. Техническим результатом изобретения является повышение ресурса ДСЕ СА ТВД газотурбинного двигателя до 2000 часов за счет снижения температуры на поверхности ДСЕ путем нанесения на поверхности, наиболее контактирующие с газовым потоком, многослойного теплозащитного покрытия с верхним керамическим слоем, обладающим низкой теплопроводностью. 1 табл., 1 пр.
Изобретение относится к области судостроения и может быть применено для технического обслуживания и ремонта судовой техники, в частности для ремонта рубашки вала баллера. Ремонт рубашки вала баллера производят на базе мобильного высокопроизводительного комплекса, состоящего из складского, рабочего и лабораторного отсеков. На установке абразивоструйной обработки, расположенной в складском отсеке, подготавливают поверхность вала баллера, предназначенную для ремонта таким образом, чтобы получить поверхность под наплавку. Затем вал баллера устанавливают во вращатель универсальный, размещенный в рабочем отсеке мобильного высокопроизводительного комплекса и производят наплавку порошковым материалом, подходящим для наплавки на материал основы. После чего наплавляют коррозионно-стойкое покрытие. При ремонте рубашки вала баллера осуществляют наплавку на образец таким образом, после окончания ремонта в лабораторном отсеке проводят металлографическое исследование наплавки на образце. Технический результат заключается в повышении качества ремонта рубашки вала баллера за счет восстановления ее геометрических размеров порошковым материалом, подходящим для наплавки на материал основы, и последующего создания на поверхности коррозионно-стойкого покрытия методом лазерной наплавки. 2 пр.

Изобретение относится к области технического обслуживания и ремонта судовой техники, в частности, в условиях морских либо речных портов. Мобильный высокопроизводительный роботизированный комплекс для ремонта судовой техники включает размещенные в контейнерах рабочие места, оснащенные коммуникациями, инструменты и оборудование. Комплекс состоит из двух морских контейнеров, один из которых является технологическим и состоит из рабочего и операторского отсека, а второй является лабораторно-транспортным и состоит из лабораторного и складского отсеков. В рабочем отсеке размещено оборудование порошковой лазерной наплавки и/или газотермического напыления, робот-манипулятор и вращатель универсальный. В операторском отсеке размещены рабочее место и оборудование для управления роботом, а также оборудование для управления комплексом. В складском отсеке размещено оборудование абразивоструйной обработки и электродуговой металлизации. В лабораторном отсеке размещено лабораторное оборудование для контроля покрытий и наплавленных слоев. Техническим результатом является обеспечение оперативного производства и ремонта судовых деталей в условиях морского либо речного порта при помощи технологий напыления и наплавки, роботизация технологических процессов судостроительного и судоремонтного производства, модернизация и дооснащение построечно-спусковых сооружений. 3 з.п. ф-лы, 1 ил.

Изобретение относится к устройствам для нанесения металлополимерных покрытий и может быть использовано для изготовления, ремонта и упрочнения поверхностей в различных отраслях промышленности. Устройство для нанесения металлополимерного покрытия содержит пистолет-металлизатор, выполненный с возможностью подачи двух проволочных металлических материалов, при соприкосновении которых возбуждается электрическая дуга для формирования металлизационной струи, кольцевой контур, представляющий собой полую трубку с равномерно расположенными отверстиями, который смонтирован на корпусе пистолета-металлизатора и выполнен с возможностью активации и дополнительного подогрева металлизационной струи пропановым или пропан-бутановым, или пропан-воздушным пламенем, насадку, смонтированную на сопле пистолета-металлизатора, содержащую два поворотных держателя с форсунками для инжектирования в металлизационную струю термопластических полимерных порошковых материалов, при этом форсунки выполнены с возможностью поворота, позволяющего инжектировать упомянутый термопластический полимерный порошковый материал в разные зоны металлизационной струи. Обеспечивается сокращение количества технологического оборудования, уменьшение времени нанесения металлополимерного покрытия, формирование металлополимерного покрытия в рамках одного процесса без переналадки оборудования, получение функционального металлополимерного покрытия с требуемыми свойствами, за счет возможности использования в качестве легирующих материалов разных термопластичных полимерных порошковых материалов. 3 ил.
Изобретение относится к способу электродугового напыления покрытий и может быть использовано в машиностроении для повышения удобства в эксплуатации при нанесении покрытий на труднодоступные поверхности изделий. Нанесение покрытия осуществляют с помощью металлизационной струи и инжектирования в металлизационную струю полимерных термопластичных материалов. Создают металлизационную струю и сначала наносят металлический слой толщиной 20-600 мкм. Наносят композитный слой толщиной 20-600 мкм таким образом, что инжектируют в металлизационную струю полимерные термопластичные материалы и затем отключают металлизационную струю и наносят полимерный слой толщиной 20-600 мкм без участия металлизационной струи. При выполнении слоев с участием полимерных термопластичных материалов дополнительно вводят пропан или пропан-бутан, или пропан-воздушную смесь. Технический результат состоит в сокращении количества технологических видов оборудования (объединение двух технологических видов оборудования в один), уменьшении времени нанесения металлополимерного покрытия (за счет исключения времени на переналадку оборудования под другой процесс нанесения покрытий), формировании металлополимерного покрытия в рамках одного процесса без переналадки оборудования, получении функционального металлополимерного покрытия с требуемыми свойствами. 2 пр.
Изобретение относится к машиностроению и может быть использовано при изготовлении и ремонте жаровых труб, работающих в условиях воздействия газообразивной эрозии. Жаровая труба газовой турбины ГТД-110М с нанесенным на внутреннюю поверхность жаровой трубы методом плазменного напыления жаростойкого подслоя толщиной 150-200 мкм и затем керамического термобарьерного слоя. Керамический термобарьерный слой напыляют плазмотроном толщиной 100-120 мкм, затем жаровую трубу подвергают двухстадийной обработке. Вначале в вакууме при давлении 1×10-4 мм рт.ст. нагревают до температуры 1050°С в течение 3-4 часов, выдерживают при той же температуре 2 часа и охлаждают с печью в вакууме. После чего на воздухе нагревают до температуры 850°С в течение 2,5-3 часов, выдерживают при той же температуре в течение 16 часов и охлаждают в течение 4,7 часа до нормальной температуры. Изобретение позволяет увеличить газообразивную стойкость защитного покрытия жаровой трубы газовой турбины без ухудшения аэродинамических характеристик жаровой трубы.
Изобретение относится к машиностроению и может быть использовано при изготовлении и ремонте лопаток, работающих в условиях воздействия газоабразивной эрозии. Лопатка газовой турбины ГТД-110М имеет нанесенный на ее поверхность методом высокоскоростного газопламенного напыления жаростойкий подслой толщиной 150-200 мкм и керамический термобарьерный слой. Керамический термобарьерный слой напыляют плазмотроном толщиной 100-120 мкм, затем лопатку подвергают двухстадийной обработке, вначале в вакууме при давлении 1×10-4 мм.рт.ст. нагревают до температуры 1050°С в течение 3-4 часов, выдерживают при той же температуре 2 часа и охлаждают до температуры 700°С со скоростью 40-50°С. После чего на воздухе нагревают до температуры 850°С в течение 2,5-3 часов, выдерживают при той же температуре в течение 16 часов и охлаждают в течение 4,7 часа до нормальной температуры. Изобретение позволяет увеличить газоабразивную стойкость защитного покрытия лопатки газовой турбины.

Изобретение относится к порошковой смеси для газотермического напыления уплотнительного покрытия лопаток турбин. Смесь содержит порошок на основе диоксида циркония, стабилизированного оксидом иттрия, в качестве основного компонента и порообразователь - порошок фторопласта марки Ф-4Д или порошок лавсана в количестве 1…10 мас.%. Обеспечивается повышение качества характеристик уплотнительных покрытий. 1 табл., 2 пр.

Изобретение относится к механическим испытаниям газотермических покрытий, а конкретно касается определения пластических деформаций в различных диапазонах нагрузок. Сущность: осуществляют нагружение образца с газотермическим покрытием, расположенного на опорах покрытием вниз, статической нагрузкой по четырехточечной схеме, последовательно, плавно один и более раз равнораспределенно в трех диапазонах нагрузок, соответственно: упругой, упругопластической и пластической зонах деформации покрытий, с последующей разгрузкой до нуля, при этом фиксируют остаточные пластические деформации (мкм), далее образец нагружают до разрушения газотермического покрытия, фиксируют максимальные деформации покрытия (мкм), рассчитывают сумму остаточных пластических деформаций (мкм) для всех диапазонов нагрузки, суммируют к ней значение максимальной деформации, а для определения остаточного ресурса в любой момент испытаний от вышеуказанной суммы вычитают накопленные на данный момент остаточные пластические деформации (мкм), при этом полученный результат переводят в процентное соотношение от вышеуказанной суммы, по полученному результату судят об остаточном ресурсе для аналогичных газотермических покрытий. Технический результат: возможность получения значений пластических деформаций газотермических покрытий при различных нагрузках, возможность рассчитать характер накопления пластических деформаций и прогнозировать долговечность, остаточный ресурс покрытия при различных режимах его эксплуатации. 2 ил.

Изобретение относится к области порошковой металлургии, в частности к порошковым материалам для газотермического напыления покрытий, и может быть использовано для защиты деталей горячего тракта авиационных газотурбинных двигателей (ГТД), наземных газотурбинных установок (ГТУ) и ракетных двигателей (РД) от воздействия высоких температур, эрозионного износа и коррозии. Порошковый материал имеет общую формулу AXBYCZ (А=Nd, Sm, Gd, Dy, Y или их смеси; В=Zr, Hf или их смеси; С=О; 1,5⋅Х+2⋅Y=6,0…8,0; X:Y=0,80…1,25, размер частиц порошка составляет 5…150 мкм, насыпная плотность порошка находится в диапазоне 0,5…3,5 г/см3, а размер кристаллитов (областей когерентного рассеяния) составляет 1…300 нм. Порошковый материал также может содержать оксиды элементов: SiO2 - до 0,05% мас., CaO - до 0,1% мас., MgO - до 0,1% мас., Fe2O3 - до 0,1% мас., Al2O3 - до 0,1% мас. и TiO2 - до 0,8% мас. или их смесь. Технический результат заключается в повышении стойкости теплозащитных покрытий к воздействию высоких температур, а также в достижении теплозащитного эффекта на поверхности детали. 9 з.п. ф-лы, 1 табл.

Изобретение относится к области газотермического напыления покрытий, а именно к технологии подготовки поверхности изделия перед нанесением детонационного покрытия. Способ детонационного нанесения покрытия из оксида алюминия на поверхность медного изделия включает воздействие на обрабатываемую поверхность потоком разогретых абразивных частиц, формируемым в стволе установки детонационного напыления, при этом нанесение покрытия и абразивную обработку поверхности проводят одновременно при одних и тех же режимах детонационного напыления с использованием порошка оксида алюминия Al2O3 с частицами различного размера. Абразивную обработку поверхности осуществляют частицами упомянутого порошка, размеры которых обеспечивают им твердое состояние при разогреве в стволе упомянутой установки. Обеспечивается повышение производительности процесса и качества подготовки поверхности за счет устранения отдельного этапа подготовки напыляемой поверхности. 1 табл., 6 ил., 1 пр.
Изобретение относится к способу получения покрытия на поверхности элемента статора энергетических турбин. Способ включает нанесение покрытия методом плазменного напыления. Порошок покрытия напыляют под углом 55-70 градусов по отношению к поверхности напыления. Скорость перемещения горелки относительно напыляемой поверхности элемента статора 0,5-1,0 м/с. Площадь пятна напыления на поверхности элемента статора составляет 1,7-5,0 см2. Техническим результатом является отсутствие трещин и расслоений в покрытии за счет снижения нагрева напыляемой поверхности в 3-4 раза, увеличение прочностных свойств покрытия, при этом увеличивается также коэффициент использования напыляемого порошка. 1 табл.
Изобретение относится к порошковой металлургии, в частности для получения уплотнительного покрытия методом газотермического напыления. Может использоваться при производстве паровых или газовых турбин для обеспечения стабильности зазоров в сопряженных элементах проточной части турбины. Уплотнительное покрытие для модификации элемента статора энергетической турбины содержит, мас.%: нитрид бора - 2-5, поливиниловый спирт - 7-10, стабилизированный оксидом иттрия диоксид циркония системы ZrO2-7-9% Y2O3 - остальное до 100%. Соотношение содержания нитрида бора к содержанию поливинилового спирта составляет 1:2. Обеспечивается повышение качества покрытия, высокая пористость без расслоений и трещин в покрытии. 1 табл., 2 пр.

Изобретение относится к установке для газопламенного напыления наноструктурированного покрытия и может быть использовано для упрочнения поверхностей изделий

Изобретение относится к способам получения наноструктурированных покрытий, упрочняющих поверхность изделий, с использованием методов газотермического напыления, в частности высокоскоростного газопламенного напыления

 


Наверх