Патенты автора Лясникова Александра Владимировна (RU)

Изобретение относится к медицине, а именно к способу напыления биосовместимого покрытия. Способ напыления биосовместимого покрытия, модифицированного компонентом с низкой температурой разложения, включающий послойное нанесение электроплазменным напылением на титановую основу покрытия, состоящего из слоя титана и слоя гидроксиапатита (ГА), модифицированного бемитом, причём электроплазменное напыление слоя из гидроксиапатита, модифицированного бемитом, производят с дистанции напыления 50-60 мм в течение 6-8 с и токе дуги 320 А. Вышеописанный способ позволяет повысить адгезию, а также сохранить частицы бемита в порах ГА при электроплазменном напылении биосовместимых покрытий. 1 з.п. ф-лы, 4 ил., 2 табл.

Изобретение относится к медицине. Описан способ получения биоактивного покрытия на основе кремнийзамещенного гидроксиапатита, включающий воздушно-абразивную обработку с использованием порошка электрокорунда дисперсностью 250-300 мкм в течение 4-6 мин, затем для формирования покрытия проводят электроплазменное напыление подслоя из порошка титана с дисперсностью 100-150 мкм в течение 5-10 с при токе дуги 300 А с дистанции напыления 150-200 мм и расходе плазмообразующего газа 20 л/мин, после чего проводят электроплазменное напыление кремнийзамещенного гидроксиапатита с дисперсностью до 90 мкм в течение 12-15 с при токе дуги 350 А с дистанции напыления 50-100 мм и расходе плазмообразующего газа 20 л/мин. Способ направлен на повышение адгезии и биоактивности покрытия. 1 ил., 3 табл.

Изобретение относится к области медицины, в частности, к стоматологии, и раскрывает способ нанесения керамических биосовместимых покрытий. Способ характеризуется тем, что включает предварительную подготовку поверхности имплантата воздушно-абразивной обработкой и ультразвуковым обезжириванием, далее проводят электроплазменное напыление подслоя из титана и биосовместимого слоя, ультразвуковое обезжиривание проводят в водном растворе ПАВ при температуре до 40°C в течение 5-7 мин, электроплазменное напыление подслоя титана производят с дистанции напыления 120-150 мм в течение 12-15 с, при расходе плазмообразующего газа 20 л/мин, дисперсности не более 150 мкм и токе дуги 350 А, электроплазменное напыление порошка магнийсодержащего трикальцийфосфата производят с дистанции напыления 50-60 мм в течение 10-12 с, расход плазмообразующего газа составляет 20 л/мин, дисперсность составляет не более 90 мкм и ток дуги 350 А. Изобретение может быть использовано в челюстно-лицевой хирургии и травматологии для изготовления внутритканевых эндопротезов на титановой основе. 2 табл., 2 ил.

Изобретение относится к медицине. Описан способ получения кремнийзамещенного гидроксиапатита, включающий синтез кремнийзамещенного гидроксиапатита методом осаждения из водного раствора реагентов, содержащих ортофосфорную кислоту, гидроксид кальция и тетраэтилортосиликат, отстаивание, выделение осадка, высушивание и термообработку осадка, отличающийся тем, что термообработку осадка ведут при температуре 200-250°С в течение 2-3 часов, затем его охлаждают в течение 1-2 часов, размалывают в течение 15 мин и производят фракционирование до 90 мкм. Технический результат заключается в повышении адгезии и биоактивности за счет использования кремнийзамещенного гидроксиапатита. 2 ил.

Изобретение относится к медицине. Описан способ получения магний-замещенного трикальцийфосфата, используемого для получения биосовместимых покрытий, применяемых в челюстно-лицевой хирургии и травматологии для изготовления внутритканевых эндопротезов, включающий подготовку шихты, представляющую собой смесь порошков, и обжиг, где в качестве шихты используют смесь пирофосфата магния и карбоната кальция при массовом соотношении 1:1 моль, при этом обжиг шихты проводят при температуре 1120-1180°C в течение 5-7 часов. Кроме того, при подготовке шихты используют пирофосфат магния в стехиометрическом соотношении Mg/P=1,67, полученный жидкофазным синтезом. Технический результат заключается в повышении биосовместимости за счет получения магний-замещенного трикальцийфосфата из двух компонентов: пирофосфата магния, полученного жидкофазным синтезом, и карбоната кальция. 1 з.п. ф-лы, 3 табл., 2 ил.

Изобретение относится к технологии получения неорганических веществ, а именно к способу получения магний-замещенного гидроксиапатита (Mg-ГА), используемого для получения биосовместимых покрытий, применяемых в челюстно-лицевой хирургии и травматологии. Способ включает синтез Mg-ГА с использованием водных растворов нитратов, диаммонийфосфата и аммиака, фильтрацию осадка и последующую сушку, причем синтез Mg-ГА осуществляют смешиванием в течение 1 ч водных растворов нитрата магния и кальция, взятых соотношении 9:1, при добавлении эквимолекулярного количества раствора диаммонийфосфата и 25%-ного водного раствора NH4OH до образования Mg-ГА в виде осадка. Mg-ГА выдерживают до созревания в течение 20-26 ч, фильтруют, сушат при температуре 90-95°С, затем в течение 100-130 ч при температуре 200-250°С. Прокаливают 6-8 ч при температуре 600-650°С, затем Mg-ГА охлаждают при комнатной температуре в течение 2-3 ч и измельчают в течение 15-20 мин. Технический результат заключается в упрощении технологического процесса получения порошка Mg-ГА при сохранении его сыпучести. 1 ил., 2 табл., 5 пр.

Изобретение относится к медицине. Описан способ получения биосовместимого покрытия на основе магний-замещенного гидроксиапатита, состоящий в предварительной подготовке поверхности медицинского изделия воздушно-абразивной обработкой, электроплазменном напылении подслоя из титана и формировании биоактивного слоя, при этом воздушно-абразивную обработку производят с использованием порошка дисперсностью 250-300 мкм в течение 5 мин, электроплазменное напыление подслоя из порошка титана с дисперсностью 100-150 мкм производят в течение 10-12 с при токе дуги 300 А с дистанции напыления до 150 мм и расходе плазмообразующего газа 20 л/мин, электроплазменное напыление порошка Mg-ΓΑ с дисперсностью до 90 мкм производят в течение 6-8 с при токе дуги 300 А с дистанции напыления до 50 мм и расходе плазмообразующего газа 20 л/мин. Способ обеспечивает повышенные значения адгезии и развитую морфологию поверхности получаемого покрытия. 2 табл., 2 ил.

Изобретение может быть использовано для плазменного напыления многофункциональных покрытий в приборо- и машиностроении, а также при изготовлении внутрикостных имплантатов с металлическими и композиционными покрытиями. Рабочий газ подают в дугу, горящую между катодом и медным анодом, с образованием плазменной струи. Напыляемый материал подают в плазменную струю струей транспортирующего газа на предварительно обработанную поверхность. Плазменное напыление проводят в вакуумной среде при качательном движении плазмотрона перпендикулярно направлению его движения и дополнительно воздействуют на напыляемую поверхность импульсными газовыми разрядами с током 90±2 A при длительности импульсов тока 0,2±0,02 с и с частотой повторения импульсов 50±2 Гц. Качательное движение плазмотрона осуществляется с углом качения 15-25° с частотой 20-40 движений в минуту и длиной поступательного движения 10-15 мм со скоростью перемещения 20-30 движений в минуту. Способ обеспечивает получение покрытия, сформированного из частиц с оптимальными характеристиками адгезии и равномерности покрытия. 1 з.п. ф-лы, 1 ил., 4 табл.

Изобретение относится к медицине, а именно к ортопедической стоматологии и травматологии, и может быть использовано для изготовления внутрикостных эндопротезов на титановой основе. Изобретение относится к способу изготовления внутрикостного стоматологического имплантата. Способ заключается в предварительной подготовке поверхности основы имплантата, изготовленной из титана, включающей механическую обработку титановой основы (формообразование), механическую полировку, затем очистку поверхности и химическое обезжиривание, последующую обработку поверхности титановой основы пучком ионов гелия с имплантацией ионов гелия в титановую основу и формированием пористой структуры на поверхности имплантата, при этом имплантацию ионов гелия проводят с энергией 100-200 кэВ и дозой 6·1017-6·1018 ион/см2, затем сформированную пористую структуру обрабатывают в вакуумной среде углекислого газа (СO2) пучком ионов инертного газа аргона с имплантацией ионов аргона в сформированную пористую структуру титана с образованием углеродной алмазоподобной беспористой пленки, при этом имплантацию ионов аргона проводят с энергией 40-130 кэВ и дозой облучения 1,25·1016-3,1·1016 ион/см2, что позволяет получать внутрикостные стоматологические имплантаты с повышенными показателями микротвердости, усталостной прочности и остеоинтеграции. 1 з.п. ф-лы, 2 табл., 7 ил.

Изобретение относится к области гальванотехники и может быть использовано в приборостроении и медицине. Способ упрочнения изделий из титана и его сплавов с максимальным линейным размером от 0,8 до 1,4 мм включает упрочнение изделий в процессе формирования оксидного покрытия методом микродугового оксидирования продолжительностью от 20 до 30 минут в анодном режиме при постоянной плотности тока (1-2)×103 А/м2 в щелочном электролите на основе гидроксида натрия или алюмината натрия. Технический результат: повышение микротвердости и прочности изделий малого размера из титана и его сплавов к изгибным и тангенциальным нагрузкам. 2 табл., 3 пр.

Изобретение относится к области формирования функциональных покрытий, в частности оксида алюминия, на поверхности изделий из титана и его сплавов методами плазменного напыления и микродугового оксидирования. Способ включает электроплазменное напыление на поверхность изделия порошка оксида алюминия дисперсностью 50-100 мкм с дистанцией напыления от 100 до 120 мм при токе дуги от 300 до 350 А и микродуговое оксидирование в анодном режиме при плотности тока (1-2)×103 А/м2, продолжительностью от 10 до 30 минут в щелочном электролите на основе гидрооксида натрия 1-3 г/л. Задачей изобретения является повышение механических свойств плазмонапыленных покрытий на титане и его сплавах, в частности микротвердости, при сокращении времени нанесения. 2 ил., 2 табл., 1 пр.

Изобретение относится к оборудованию по пропитке пористых материалов и изделий широкого промышленного назначения. Устройство содержит рабочую камеру, подключенную к ней вакуумную систему, систему нагнетания и слива пропиточного раствора, а также устройство для размещения пористых изделий. При этом рабочая камера разделена на две части вакуумным затвором, который расположен над емкостью с пропиточным раствором и прикреплен к стенке камеры с возможностью вращательно-поступательного движения. Устройство для размещения пористых изделий выполнено в виде стержня с возможностью перемещения в вертикальном положении в верхней части камеры, на нем закреплены держатели пористых изделий, снабженные ударным приспособлением. В нижней части камеры установлен ударный механизм, кинематически взаимодействующий с ударным приспособлением. Устройство также может содержать автоматический привод, прикрепленный к вакуумному затвору, и газоразрядные лампы для обработки пористых изделий. Устройство позволяет увеличить скорость и глубину проникновения пропиточного раствора, а также повысить производительность. 2 з.п. ф-лы, 2 ил.

Изобретение относится к медицине, а именно к травматологии и ортопедиии, и может быть использовано при костно-пластических операциях для доставки лекарственных средств в зону дефекта и их пролонгированного воздействия в очаге поражения. Способ насыщения пористого покрытия эндопротезов включает погружение эндопротеза в пропиточную емкость с раствором лекарственного вещества, расположенную в рабочей камере. Вакуумирование в камере проводят путем создания отрицательного давления, с последующим увеличением давления. Верхнюю часть эндопротеза, включающего нанопоры и наноканалы, соединяют с крепежным элементом в виде стержня и закрепляют в камере. Затем осуществляют вакуумирование в камере до погружения эндопротеза в пропиточную емкость, с одновременной его обработкой ультрафиолетовым и инфракрасным излучением в течение 1,5-4 ч. После чего давление в камере увеличивают до 1-1000 Па и осуществляют погружение эндопротеза в пропиточную емкость. После погружения производят ударное механическое воздействие по крепежному элементу с ускорении процесса насыщения пористой структуры с нанопорами и наноканалами частотой 100-2000 Гц. Способ обеспечивает ускорение процесса насыщения пористой структуры лекарственным средством и антимикробную обработку внутреннего пористого пространства покрытия эндопротеза. 1 пр., 3 табл., 1 ил.

Изобретение относится к медицине, а именно к челюстно-лицевой хирургии и травматологии, и может быть использовано для изготовления внутритканевых эндопротезов на титановой основе. Описан способ изготовления внутрикостных имплантатов с биоактивным покрытием, заключающийся в послойном нанесении плазменным напылением на титановую основу имплантата четырех слоев, при этом первым слоем напыляют порошок титана дисперсностью 3-5 мкм, дистанцией напыления 70-80 мм и толщиной 5-10 мкм, вторым слоем напыляют порошок титана дисперсностью 50-100 мкм, дистанцией напыления 100 мм, толщиной 50-115 мкм, третьим слоем наносят механическую смесь порошков титана дисперсностью 40-70 мкм и гидроксиапатита дисперсностью 5-10 мкм с соотношением 60-80 и 20-40 мас.% соответственно, дистанцией напыления 80 мм и толщиной слоя 15-20 мкм, четвертый слой формируют на основе механической смеси биоактивных порошков на основе гидроксиапатита дистанцией 70 мм и толщиной 20-30 мкм, согласно заявляемому техническому решению при формировании четвертого слоя смешивают порошок гидроксиапатита дисперсностью 70-90 мкм в количестве 60% от общего количества смеси с порошком фторгидроксиапатита дисперсностью 40-70 мкм в количестве 40% от общего количества смеси. Внутрикостные имплантаты обладают высокими остеоинтеграционными свойствами и характеризующимися развитым микрорельефом и однородностью поверхности. 1 ил., 1 табл.

Изобретение относится к медицине и может быть использовано для изготовления внутритканевых эндопротезов на титановой основе. Способ изготовления имплантатов включает многослойное плазменное напыление на металлическую основу имплантатов биологического активного покрытия, при этом первым и вторым слоями дистанционно напыляют титан, третьим слоем наносят механическую смесь порошка титана и гидроксиапатита, а четвертый слой формируют на основе гидроксиапатита. После чего имплантаты с многослойным биологическим активным покрытием помещают в емкость с раствором нитрата серебра с концентрацией 0,04% AgNO3, помещенную в дополнительную емкость с водой, и проводят обработку со стороны поверхности напыленного многослойного биологического активного покрытия ультразвуковым излучением в течение 35 секунд при интенсивности ультразвука 9,6 Вт/см2 и частоте 22 кГц. Изобретение позволяет изготовить имплантаты с покрытием, способствующим быстрой и надежной остеоинтеграции имплантата с биологическими тканями и обладающим бактерицидным эффектом. 1 з.п. ф-лы, 2 ил., 1 табл.

Изобретение относится к медицине, а именно к челюстно-лицевой хирургии и травматологии, и предназначено для использования при изготовлении внутритканевых эндопротезов на титановой основе. На металлическую основу имплантата осуществляют многослойное плазменное напыление биологического активного покрытия. При этом первым и вторым слоями дистанционно напыляют титан. Третьим слоем наносят механическую смесь порошка титана и гидроксиапатита. Четвертый слой формируют на основе гидроксиапатита, Далее имплантат с многослойным биоактивным покрытием помещают в емкость с раствором трихлорлантана с концентрацией 0,04% Lads, помещенную в дополнительную емкость с водой, и проводят обработку со стороны поверхности напыленного многослойного биоактивного покрытия ультразвуковым излучением. Финишную обработку ультразвуковым излучением в растворе трихлорлантана осуществляют в течение 35 с при интенсивности ультразвука 9,6 Вт/см2 и частоте 22 кГц. Способ, за счет финишной ультразвуковой обработки в растворе трихлорлантана, позволяет получить покрытия имплантата с антикоагуляционными свойствами. 1 з.п. ф-лы, 1 ил., 1 табл.

Изобретение относится к медицине, а именно к ортопедической стоматологии. Описан способ изготовления внутрикостных имплантатов, включающий послойное нанесение плазменным напылением на металлическую основу имплантата биологического активного покрытия, при этом первым и вторым слоями дистанционно напыляют титан, третьим слоем наносят механическую смесь порошка титана и гидроксиапатита, четвертый слой формируют на основе гидроксиапатита или оксида алюминия, при этом при формировании четвертого слоя смешивают порошок бемита дисперсностью не более 50 нм с порошками гидроксиапатита или оксида алюминия в количестве 5-20% порошка бемита от общего количества веществ, при этом бемит берут в виде суспензии, приготовленной с добавлением поверхностно-активного вещества, растворенного в дистиллированной воде концентрацией 0,25-5%, обработанного в ультразвуковой ванне, затем полученную суспензию из бемита и гидроксиапатита или оксида алюминия обрабатывают в ультразвуковой ванне, сушат, отжигают и измельчают. Внутрикостные имплантаты имеют биосовместимое покрытие повышенной прочности. 4 з.п. ф-лы, 2 ил.

Изобретение относится к медицине, а именно к челюстно-лицевой хирургии и травматологии, и может быть использовано для формирования антимикробного покрытия при изготовлении внутритканевых эндопротезов на титановой основе. Для этого осуществляют предварительную подготовку серебросодержащего раствора, предварительную подготовку поверхности имплантата и формирование покрытия. При подготовке серебросодержащего раствора сначала помещают порошок гидроксиапатита в 0,04% раствор AgNO3. Затем осуществляют выдержку порошка на воздухе при комнатной температуре в течение времени, необходимого для качественной пропитки частиц гидроксиапатита раствором AgNO3. Далее отфильтровывают осадок, который затем промывают горячей водой и высушивают при 200°-300°C в течение 4-6 часов, а затем отжигают при 600°-700°C в течение 2-3 часов. Предварительную подготовку поверхности имплантата осуществляют путем струйной обработки поверхности порошком электрокорунда под давлением. Формирование покрытия производят плазменным напылением сначала титанового подслоя и затем серебросодержащего порошка гидроксиапатита. При этом плазменное напыление титанового подслоя осуществляют при напряжении 35 В, силе тока 450 A, дистанции напыления 100 мм и дисперсности титанового порошка 100-120 мкм, расход аргона 55-60 л/мин. Плазменное напыление серебросодержащего порошка гидроксиапатита производят при силе тока 450 А, напряжении 35 В, дистанции 80 и 120 мм, дисперсности 70-75 мкм и расходе аргона 65-70 л/мин. Способ обеспечивает получение покрытия имплантата, способствующее быстрой и надежной остеоинтеграции этого имплантата за счет формирования развитой морфологии поверхности и создания антимикробного эффекта в прилежащих к эндопротезу тканях. 4 табл., 2 ил.

Изобретение относится к челюстно-лицевой хирургии и травматологии и описывает способ получения лантансодержащего покрытия. При осуществлении способа помещают порошок гидроксиапатита в раствор 0,04 LaCl3, выдерживают порошок на воздухе при комнатной температуре в течение времени, необходимого для качественной пропитки частиц гидроксиапатита раствором LaCl3, отфильтровывают осадок на воронке Бюхнера, который затем промывают горячей водой, высушивают при 200-300°С в течение 4-6 часов и отжигают при 600-700°С в течение 2-3 часов, формирование лантансодержаего покрытия производят сначала напылением титанового подслоя, а затем лантансодержащего порошка гидроксиапатита. Способ обеспечивает создание развитой морфологии поверхности, а также антитромбоцитный и антимикробный эффект, что способствует остеоинтеграции имплантата. 3 з.п. ф-лы, 3 табл., 2 ил.

Изобретение относится к медицине, а именно к челюстно-лицевой хирургии и травматологии, и может быть использовано для изготовления внутритканевых эндопротезов на титановой основе, а также для подготовки поверхности имплантатов под нанесение биосовместимых покрытий. Описан способ модифицирования титановой поверхности, заключающийся в струйной обработке внешней поверхности имплантата и последующей химической обработке внешней поверхности имплантата, при этом химическую обработку осуществляют одновременно с воздействием ультразвука в нитрат-фторидном электролите, затем осуществляют промывку имплантата в ультразвуковой ванне с проточной и дистиллированной водой в течение 120 с и высушивание на воздухе. При необходимости последующего напыления биосовместимых покрытий титановую поверхность имплантата подвергают окончательной обработке в ультразвуковой ванне с этиловым спиртом в течение 30 с. Размер частиц порошка электрокорунда при струйной обработке может составлять 200-250 мкм. Химическую обработку осуществляют одновременно с воздействием ультразвука в растворе 2 М HNO3+1 M HF с воздействием ультразвуковых колебаний интенсивностью 9,6 Вт/см2 в течение 120 с. Способ обеспечивает развитую морфологию поверхности и ее равномерность. 2 з.п. ф-лы, 1 ил.

Изобретение относится к медицине

Изобретение относится к области стоматологической имплантологии, в частности к конструкции дентального имплантата, предназначенного для протезирования зубов верхней челюсти в условиях атрофии альвеолярного отростка дистальных отделов

 


Наверх