Патенты автора Малашенко Анатолий Емельянович (RU)

Изобретение относится к области гидроакустики, а именно к автономным гидроакустическим станциям (АГАС), и может быть использовано для обнаружения, классификации и определения координат и параметров движения шумящих морских объектов (целей) в различных районах мирового океана. Предложен способ обнаружения морской шумящей цели АГАС, включающий построение траекторий из обнаруженных сигналов, разделение траекторий на сигнальные и помеховые, определение класса, координат и параметров движения источника каждой сигнальной траектории, при этом для принятия решения о принадлежности траектории к сигнальной или помеховой дополнительно применена двухпороговая процедура, в соответствии с которой отнесение траектории к сигнальной осуществляется после не менее чем k обнаружений сигналов в n последовательных обнаружениях, а отнесение траектории к помеховой осуществляется после необнаружения сигналов в m=n-k+1 последовательных обнаружениях. При принятии решения о помеховой траектории АГАС переводится из режима обнаружения в дежурный режим, имеющий минимальное энергопотребление, а перевод из дежурного режима в режим обнаружения производится через период времени, равный расчетному времени нахождения малошумной цели в зоне обнаружения АГАС минус время, затрачиваемое на не менее чем одну последовательность n обнаружений. Технический результат - снижение энергопотребления при работе АГАС, обеспечивающее увеличение длительности ее автономного функционирования. 2 ил.

Изобретение относится к области подводной навигации, а именно к определению местоположения подводного объекта посредством гидроакустической навигационной системы, и может быть использовано для определения навигационных характеристик (азимута, угла места, дальности, наклонного расстояния) подводного объекта. Достигаемый технический результат - повышение точности позиционирования и расширение функциональных возможностей за счет использования составного навигационно-информационного сигнала маяка-пингера, четырехэлементной приемной антенны с пространственной геометрией. размещения сферических гидрофонов и соответствующей процедуры обработки сигналов приемной антенны. Указанный результат достигается за счет того, что на подводном объекте формируют и передают на судно обеспечения составной сигнал маяка-пингера, состоящий из навигационной и информационной частей, применяют для приема сигнала от подводного объекта четырехэлементную приемную антенну с пространственным размещением сферических гидрофонов, исключающим их расположение в одной плоскости, и максимальным расстоянием между гидрофонами, не превышающим длину волны излучаемых маяком-пингером колебаний навигационной части составного сигнала, измеряют декартовы координаты гидрофонов приемной антенны, определяют разности фаз колебаний навигационной части составного сигнала маяка-пингера на выходах трех пар гидрофонов приемной антенны, вычисляют азимут, угол места, дальность и наклонное расстояние до подводного объекта с использованием соотношений, связывающих декартовы координаты гидрофонов приемной антенны, измеренные разности фаз колебаний навигационной части составного сигнала маяка-пингера на выходах трех пар гидрофонов приемной антенны, частоту колебаний навигационной части составного сигнала и глубину погружения подводного объекта, значение которой передается в информационной части составного сигнала маяка-пингера. 8 з.п. ф-лы, 6 ил.

Изобретение относится к гидрофизике, геофизике и радиофизике. Оно основано на объединении фундаментальных разработок системы навигации «ГЛОНАСС», системы связи «Гонец», а также научно-технических разработок радиогидроакустической системы мониторинга полей атмосферы, океана и земной коры в морской среде, как Единого информационного пространства Земли. Способ формирования и применения глобальной радиогидроакустической системы мониторинга полей атмосферы, океана и земной коры в морской среде и распознавания их источников включает в себя размещение в среде излучающих и приемных преобразователей, озвучивание среды низкочастотными акустическими сигналами стабилизированной частоты и формирование в ней рабочих зон нелинейного взаимодействия и параметрического преобразования просветных и измеряемых информационных волн различной физической природы, прием нелинейно преобразованных просветных сигналов, усиление их в полосе параметрического преобразования, перенос в высокочастотную область, узкополосный спектральный анализ, выделение в спектрах верхней и (или) нижней боковых полос и восстановление по ним, с учетом параметрического и частотно-временного преобразования, исходных характеристик информационных волн. Просветная параметрическая антенна сформирована как пространственная многолучевая, для чего в ней использованы ненаправленные излучающие преобразователи, которые расположены в центре контролируемой акватории и установлены по глубине как на оси подводного звукового канала, так и выше и ниже его. Одинаковые по структуре приемные блоки размещены по глубине аналогично излучающим преобразователям и расположены относительно излучающего центра по кругу или периметру контролируемой акватории через 45°. Каждый из приемных блоков сформирован из трех ненаправленных преобразователей (гидрофонов), которые расположены в вертикальной плоскости контролируемой среды по треугольникам, предпочтительно равнобедренным, основания которых лежат на одной вертикали, а их вершины обращены к излучающим преобразователям. Просветные сигналы каждого излучающего преобразователя принимаются каждым одиночным приемным преобразователем (гидрофоном) каждого из трех приемных блоков, в результате чего просветная параметрическая антенна представляет собой комплекс расположенных в вертикальной плоскости многолучевых параметрических антенн, ориентированных радиально от центра к периферии и равно удаленных от соседних с ними антенн. Размещенные в вертикальной плоскости приемные блоки представляют собой дискретную линейную антенну, в которой расстояния между преобразователями приемных блоков в вертикальной плоскости установлены в соответствии с корреляционными свойствами просветного акустического поля. Принципиальное отличие заявляемого способа заключается в том, что основную (масштабируемую) просветную параметрическую систему мониторинга информационных полей атмосферы, океана и земной коры в морской среде и распознавания их источников формируют в пределах акваторий морей Дальневосточного региона или в пределах совокупного пространства других морских экономических зон Российской Федерации. В структуру глобальной радиогидроакустической системы вводят дополнительные подсистемы, которые формируют и устанавливают на географически удаленных акваториях относительно основной (масштабируемой) системы. Основную систему и дополнительные подсистемы снабжают различными излучающими и приемными трактами с их подводными излучателями и приемными блоками. Сигналы с подводных преобразователей посредством кабелей передают в приемные тракты, где их обрабатывают линиями нейросетевого анализа, введенными в состав всех приемных трактов, и выполняют автоматическое распознавание принадлежности области спектра объекту классификации. Результаты аналитической обработки по каналам связи через блок переключения приемных трактов передают в Единый информационно-аналитический центр (ЕИАЦ) глобальной радиогидроакустической системы, где выполняют итоговый анализ, распознавание и классификацию математически обработанных образов спектрограмм объектов, а также производят выработку команд управления работой основной (масштабируемой) системы и дополнительных подсистем в соответствии с изменениями задач и условий проведения мониторинга акваторий. Причем ЕИАЦ соединяют с внешними (не системными) блоками, обеспечивающими обмен данными и связь между ЕИАЦ и (или) системами навигации «ГЛОНАСС» и связи «Гонец». Кроме того, просветные параметрические антенны дополнительных подсистем формируют как комплексы вертикальных многолучевых параметрических антенн, расположенных по кругу или периметру контролируемых акваторий через 45° и ориентированных от центра к периферии, при этом дополнительные подсистемы удаляют от соседних с ними подсистем на дистанции, обеспечивающие мониторинг акваторий. Кроме того, приемные блоки дополнительных просветных параметрических систем формируют как дискретные антенны, у которых расстояния между преобразователями (гидрофонами) устанавливают в соответствии с корреляционными свойствами просветного акустического поля. Технический результат изобретения заключается в разработке способа формирования и применения глобальной радиогидроакустической системы, обеспечивающей наблюдение пространственно-временной динамики характеристик полей, формируемых источниками атмосферы, океана и земной коры в условиях протяженного гидроакустического канала с переменными характеристиками среды и границ. Диапазон частот дальнего параметрического приема информационных волн составляет сотни-десятки-единицы-доли герц, включая волны СНЧ-колебаний движущихся объектов, как целого. Распознавание источников формирования в морской среде информационных полей выполняется на базе нечеткой логики искусственных нейронных сетей как в автоматическом режиме, так и с участием оператора. 2 з.п. ф-лы, 17 ил., 1 табл.

Изобретение относится к гидрофизике, геофизике и радиофизике. Оно основано на объединении фундаментальных разработок глобальной системы навигации «ГЛОНАСС», системы связи «Гонец», а также разработок широкомасштабной радиогидроакустической системы мониторинга полей атмосферы, океана и земной коры в морской среде как Единого информационного пространства Земли. Глобальная радиогидроакустическая система мониторинга полей атмосферы, океана и земной коры в морской среде и распознавания источников их формирования включает в себя основную (масштабируемую) просветную параметрическую систему мониторинга, содержащую установленные на противоположных границах контролируемой среды один излучающий и три приемных акустических преобразователей, сформированные между ними три рабочие зоны нелинейного взаимодействия и параметрического преобразования просветных и измеряемых информационных волн. Основная система мониторинга содержит излучающий тракт, включающий в себя последовательно соединенные формирователь сигналов стабилизированной частоты в диапазоне десятки-сотни герц, усилитель мощности сигналов и соединенные с ним через блок согласования и далее через кабели подводные преобразователи (излучатели) просветных акустических сигналов. Приемный тракт основной системы мониторинга содержит линию спектрального анализа принимаемых нелинейно преобразованных просветных сигналов, включающую последовательно соединенные переключатель (коммутатор) всех линий анализа, полосовой усилитель, преобразователь частотно-временного масштаба принимаемых сигналов в высокочастотную область, узкополосный анализатор их спектра и функционально связанный с ним регистратор (рекордер), а также три линии корреляционного анализа, содержащие последовательно соединенные блоки измерения функции корреляции сигналов между средним и крайними приемными преобразователями, блоки измерения функции их взаимной корреляции и анализатор (ЭВМ) измеряемой всеми линиями информации. Рабочие зоны нелинейного взаимодействия и параметрического преобразования просветных и информационных полей атмосферы, океана и земной коры сформированы в вертикальной плоскости контролируемой среды как многолучевые пространственно-развитые параметрические антенны, для чего три всенаправленных излучающих преобразователя расположены в центре акватории и установлены по глубине на оси, ниже и выше оси подводного звукового канала, а приемные преобразователи, объединенные по три штуки в треугольные блоки, установлены по глубине аналогично излучателям и удалены от излучателей на дистанцию, обеспечивающую мониторинг акватории. Одиночные гидрофоны каждого приемного блока посредством кабелей через блок переключения приемных канатов соединены с линиями анализа приемного тракта, далее выходы линий спектрального и корреляционного анализа принимаемых просветных сигналов соединены с входом блока анализа выделяемой всеми линиями комплексной информации (ЭВМ), а его выход через радиоблок соединен с информационно-аналитическим центром, содержащим последовательно соединенные приемный радиоблок, блок системного анализа и передающий радиоблок, выход которого соединен с блоком формирователя сигналов излучающего тракта. Основную многоканальную просветную параметрическую систему формируют как комплекс вертикальных многолучевых параметрических антенн, расположенных по кругу или периметру контролируемой акватории через 45° и ориентированных от излучающего центра к периферии. Приемные блоки сформированы как дискретные антенны, у которых расстояния между преобразователями (гидрофонами) установлены в соответствии с корреляционными свойствами просветного акустического поля. Предлагаемая система принципиально отличается тем, что глобальная радиогидроакустическая система формируется в пределах акваторий морей Дальневосточного региона или в совокупном пространстве других морских экономических зон Российской Федерации. В структуру глобальной радиогидроакустической системы введены дополнительные подсистемы, сформированные и установленные на географически удаленных акваториях относительно основной (масштабируемой) системы. Основная система и дополнительные подсистемы снабжены различными излучающими и приемными трактами с их подводными излучателями и приемными блоками. Каждый элемент (гидрофон) приемных блоков через многожильный подводный кабель соединен с соответствующей линией нейросетевого анализа, которые введены в состав всех приемных трактов для автоматического определения степени принадлежности исследуемой области спектра объекту классификации. Каждая линия нейросетевого анализа включает в себя последовательно соединенные управляемый коммутатор, блок нейросетевого распознавания и классификации, блок совокупного анализа, выход которого соединен с блоком анализа выделяемой всеми линиями информации. Приемные тракты по каналам связи через блок переключения соединены с Единым информационно-аналитическим центром (ЕИАЦ) итогового анализа, распознавания и классификации математически обработанных образов спектрограмм объектов, а также выработки сигналов (команд) управления работой основной системы и дополнительных подсистем. Причем ЕИАЦ соединен с внешними (не системными) блоками, обеспечивающими обмен данными и связь между ЕИАЦ и(или) системами навигации «ГЛОНАСС» и связи «Гонец». Кроме того, просветные параметрические антенны дополнительных подсистем сформированы как комплексы вертикальных многолучевых параметрических антенн, расположенных по кругу или периметру контролируемых акваторий через 45° и ориентированных от центра к периферии, при этом дополнительные подсистемы удалены от соседних с ними подсистем на дистанции, обеспечивающие мониторинг акваторий. Кроме того, приемные блоки дополнительных просветных параметрических систем сформированы как дискретные антенны, у которых расстояния между преобразователями (гидрофонами) установлены в соответствии с корреляционными свойствами просветного акустического поля. Технический результат изобретения заключается в разработке глобальной радиогидроакустической системы, обеспечивающей наблюдение пространственно-временной динамики и распознавание характеристик полей, формируемых источниками атмосферы, океана и Земной коры в условиях протяженного гидроакустического канала с переменными характеристиками среды и границ. Диапазон частот дальнего параметрического приема информационных волн составляет сотни десятки единицы доли герц, включая волны СНЧ колебаний движущихся объектов, как целого. Операции распознавания и классификации источников формирования в морской среде информационных полей выполняются на базе нечеткой логики искусственных нейронных сетей как в автоматическом режиме, так и с участием оператора. 2 з.п. ф-лы, 17 ил., 1 табл.

В изобретении представлены научно-технические разработки и технологии способа многофункционального экологического мониторинга районов нефтегазодобычи на морском шельфе. Сущность: способ экологического мониторинга и охраны районов нефтегазодобычи, включает в себя размещение излучающего и приемного блоков измерительной системы на противоположных границах контролируемой среды, облучение ее акустическими сигналами стабильной частоты и формирование рабочей зоны нелинейного взаимодействия и параметрического преобразования просветных и измеряемых информационных волн, прием нелинейно преобразованных просветных волн и усиление в полосе преобразования, перенос их частотно-временного масштаба в высокочастотную область и проведение их узкополосного спектрального анализа и выделение в спектрах параметрических составляющих суммарной и (или) разностной частоты и восстановление по ним, с учетом временного и параметрического преобразования, исходных характеристик измеряемых информационных волн. Дополнительно в нем проводят многофункциональный экологический мониторинг обследуемой среды, а так же охрану акватории от нарушителей и диверсантов, для этого в месте установки излучающего блока системы мониторинга размещают расположенный на судне-носителе блок многофункционального измерения экологических характеристик среды «Аквазонд», который затем перемещают в место обнаруженного экологического проявления скоплений, для чего контролируемую среду облучают просветными акустическими сигналами близкой стабильной частоты, а рабочую зону нелинейного взаимодействия просветных и информационных волн формируют по всему пространству обследуемой акватории, для этого излучающий блок системы мониторинга размещают в центре акватории, а приемные блоки - по ее периметру (или кругу) через 45° относительно излучающего центра, при этом в каждый приемный блок системы включают по три гидрофона, которые располагают в углах горизонтальных (предпочтительно, равнобедренных) треугольников, а их вершины направляют в сторону излучающего блока, при этом одиночные гидрофоны каждого приемного блока подключают к расположенными на поверхности моря радиогидроакустическим буям (РГБ), принимаемые просветные сигналы, с выходов которых по каналам связи через многоканальный приемный радиоблок, далее через блок переключения приемных каналов соединяют с многофункциональным приемным трактом системы мониторинга, при этом в излучающий тракт системы мониторинга включают генератор сигналов близкой стабильной частоты, а также генератор сигналов с частотно-временной (или фазовой) модуляцией, двухканальный усилитель мощности сигналов, двухканальный блок согласования выходов усилителя мощности с подводными кабелями и далее с излучающими акустическими преобразователями, а приемный тракт измерительной системы формируют как многоканальный и многофункциональный, в который включают один канал спектрального анализа и выделения информационных сигналов разностной и (или) суммарной частоты, формируемых нелинейными областями движущихся объектов-нарушителей, содержащий последовательно соединенные блоки: полосового усилителя, преобразователя временного масштаба сигналов в высокочастотную область, узкополосного анализатора спектров и функционально связанного с ним регистратора (рекордера), при этом в приемный тракт измерительной системы включают также восемь каналов корреляционного и взаимно корреляционного анализа принимаемых сигналов, при этом в каждый из восьми каналов корреляционного и взаимно корреляционного анализа сигналов включают последовательно соединенные: полосовые усилители, два параллельных блока измерения корреляционных функций между сигналами центрального и крайних гидрофонов, расположенных в вершинах треугольников, далее блоки измерения функций взаимной корреляции сигналов, выходы которых соединяют с блоком определения точек пересечения сигналов взаимно корреляционных функций (ЭВМ), как мест проявления нефтегазовых скоплений или мест расположения объектов-нарушителей, в которые затем размещают блок многофункционального экологического измерителя «Аквазонд», а измеряемые сигналы по радиоканалу передают на вход блока ЭВМ. Кроме того, контролируемую среду облучают акустическими сигналами близкой стабильной частоты в диапазоне единиц килогерц. Кроме того, контролируемую среду дополнительно, с заданной периодичностью, озвучивают сложными сигналами с частотно-временной или фазовой модуляцией в полосе частот единицы - десятки килогерц, при этом облучение среды сигналами близкой частоты или сложными сигналами проводят по заданной программе мониторинга и контроля акватории в соответствии с обстановкой на акватории и за ее границами. Кроме того, мониторинг и охрану обследуемого района в зависимости от поставленной задачи проводят в заданном, относительно излучающего центра, секторе углов приема просветных сигналов. Кроме того, в систему мониторинга включают информационно-аналитический центр (ИАЦ), в который поступает информация от внешних источников наблюдения, включая спутниковые системы навигации «Глонасс» и связи «Гонец», об экологическом состоянии поверхности обследуемой акватории, а также сейсмической и синоптической обстановки за ее пределами. Технический эффект изобретения заключается в разработке технологий обнаружения признаков проявления в среде и на ее поверхности нефтегазовых скоплений, проведение многофункционального экологического мониторинга среды, а также охраны акватории от нарушителей и оповещение о вероятном вступлении в обследуемый район опасных явлении. 4 з.п. ф-лы, 6 ил., 1 табл.

В изобретении представлены научно-технические разработки и технологии многофункционального экологического мониторинга районов нефтегазодобычи, расположенных на морском шельфе. Технические решения изобретения основаны на закономерностях и измерительных технологиях нелинейной просветной гидроакустики, а их реализация осуществляется с использованием радиогидроакустических средств морского приборостроения, в качестве которых использован комплекс «Аквазонд». Используется также текущая информация спутниковых систем навигации «Глонасс» и связи «Гонец». Радиогидроакустическая система экологического мониторинга и охраны районов нефтегазодобычи включает в себя размещенные в обследуемой среде излучающий и приемный акустические блоки, сформированную между ними рабочую зону нелинейного взаимодействия и параметрического преобразования волн накачки среды с измеряемыми информационными, соединенные с акустическими блоками тракт формирования и усиления излучаемых сигналов накачки среды, а также тракт приема нелинейно преобразованных сигналов накачки, их усиление, обработка и анализ с выделением в них характеристик измеряемых информационных волн, отличается тем, что измерительная система включает размещенные в центре акватории блок всенаправленного облучения среды просветными акустическими сигналами близкой стабильной частоты, а также блок излучения сложных (ЛЧМ или ФМ) сигналов, а приемные блоки в количестве 8-и изделий размещают по ее периметру (или кругу) через 45° относительно излучающего центра, при этом в каждый приемный блок системы включены по три гидрофона, которые размещены в углах горизонтальных (предпочтительно, равнобедренных) треугольников, а их вершины направлены в сторону излучающих блоков, при этом приемные гидрофоны каждого приемного блока подключены к расположенным на поверхности моря радиогидроакустическим буям (РГБ), выходы которых по каналам связи через многоканальный приемный радиоблок, далее блок переключения приемных каналов соединены с многоканальным и многофункциональным приемным трактом системы мониторинга, а в ее излучающий тракт включен генератор сигналов близкой стабильной частоты и генератор сложных сигналов (ЛЧМ или ФМ), выходы которых соединены со входом двухканального усилителя мощности, а его выходы с двухканальным блоком согласования выходов усилителя мощности с подводными кабелями и далее с излучающими блоками (акустическими преобразователями), при этом приемный тракт измерительной системы сформирован как многоканальный и многофункциональный, включающий один канал спектрального анализа и выделения сигналов разностной и (или) суммарной частоты, содержащий последовательно соединенные блоки: полосового усилителя, преобразователя временного масштаба сигналов в высокочастотную область, узкополосного анализатора спектров и функционально связанного с ним регистратора (рекордера), при этом в приемный тракт измерительной системы включены также 8 каналов корреляционного и взаимно корреляционного анализа принимаемых просветных сигналов, для этого в каждый из них включены последовательно соединенные блоки - полосовые усилители, по два параллельно подключенных блока измерения корреляционных функций между сигналами центрального и крайних, расположенных в вершинах треугольников гидрофонов, далее блоки измерения функций их взаимной корреляции сигналов, выходы которых соединены с блоком определения точек пересечения сигналов взаимно-корреляционных функций (ЭВМ). Кроме того, многофункциональный блок измерения экологических характеристик среды первоначально расположен в месте излучающих блоков и размещен на судне-носителе, который затем перемещают и устанавливают в местах обнаруженных экологических изменений характеристик среды. Кроме того, блок формирования просветных сигналов близкой частоты обеспечивает облучение среды в диапазоне единиц килогерц. Кроме того, контролируемую среду с заданной периодичностью, дополнительно, по заданной программе озвучивают сигналами с частотно-временной или фазовой модуляцией в полосе единицы-десятки килогерц. Кроме того, мониторинг и охрана обследуемого района в зависимости от поставленной задачи проводится в заданном относительно излучающего центра секторе углов приема просветных сигналов. Кроме того, в систему экологического мониторинга и контроля включен блок информационно-аналитического центра (ИАЦ), который по каналам связи соединен с блоками передачи информации от спутниковых систем навигации «ГЛОНАСС» и связи «Гонец» об экологическом состоянии поверхности обследуемой акваторий, а также о сейсмической и синоптической обстановке за ее пределами. Технический эффект изобретения заключается в разработке эффективных технологий обнаружения признаков проявления в среде и на ее поверхности нефтегазовых скоплений, проведении многофункционального экологического мониторинга среды, а также охраны акватории от проникновения нарушителей и оповещении о вероятном вступлении в обследуемый район опасных явлений. 5 з.п. ф-лы, 6 ил., 1 табл.

Изобретение относится к областям гидроакустики, гидрофизики и геофизики. Способ формирования и применения пространственно развитой просветной параметрической антенны в морской среде включает в себя формирование просветной приемной параметрической антенны как многолучевой, соизмеримой с пространственной протяженностью контролируемой морской среды, для этого используют ненаправленные излучающие преобразователи, которые располагают в центре акватории и размещают их на оси подводного звукового канала, выше и ниже его, а три приемных блока формируют из трех ненаправленных акустических преобразователей каждый, размещенных в вертикальной плоскости по треугольникам, а по глубине располагают аналогично излучающим преобразователям, при этом вершины треугольников направляют в сторону излучателей, при этом нелинейно преобразованные просветные сигналы многоканально принимают одиночными преобразователями трех приемных блоков и посредством подводных кабелей через блок коммутации, и переключения каналов анализа сигналов подают на входы многоканального и многофункционального приемного тракта, в котором измеряют характеристики просветных сигналов каждым приемным блоком, определяют направления их приходов в вертикальной плоскости контролируемого сектора, для этого принимаемые блоками просветные сигналы усиливают в полосе частот их параметрического преобразования, измеряют корреляционные функции сигналов между средним и крайними преобразователями, затем измеряют их взаимно корреляционные функции, по характерным максимумам которых определяют направления приходов информационных сигналов «сверху и снизу», далее на основе алгоритма решения «обратной лучевой задачи» формирования структуры просветного акустического поля определяют точки пересечения лучей по направлениям наблюдаемых секторов для каждого приемного блока как места расположения морских источников излучения информационных волн, далее в сигналах взаимно корреляционных функций с выходов каждой линии анализа измеряют узкополосные спектры, по которым с учетом параметрического преобразования в среде и частотно-временного преобразования в приемном тракте определяют частоту измеряемых информационных волн и их принадлежность (идентификацию) к атмосферным, морским или донным. Техническим результатом является повышение чувствительности и дальности параметрического приема волн различной физической природы. 3 з.п. ф-лы, 15 ил.

Изобретение относится к гидрофизике, геофизике и может быть использовано в решении задач комплексного мониторинга гидрофизических и геофизических полей, формируемых естественными и искусственными источниками, процессами и явлениями океана и земной коры. Такие поля формируются морскими объектами, динамическими и сейсмическими, а также синоптическими процессами и опасными явлениями. Заявленный способ акустической томографии гидрофизических и геофизических полей в морской среде, включает в себя размещение излучающего и приемного блоков системы мониторинга на противоположных границах контролируемой среды, озвучивание среды низкочастотными просветными сигналами стабильной частоты и формирование в ней зоны нелинейного взаимодействия и параметрического преобразования просветных и измеряемых информационных волн. Прием, усиление и спектральный анализ нелинейно преобразованных просветных сигналов, определение в них характеристик информационных волн. Способ отличается тем, что приемный блок системы мониторинга формируют как дискретную линейную антенну, включающую n элементов (акустических преобразователей), которые горизонтально размещают в направлении излучающего блока. Просветные сигналы принимают преобразователями дискретной антенны, предварительно усиливают и посредством многожильного кабеля передают на приемный тракт системы - в блок преобразования их частотно-временного масштаба в высокочастотную область, далее в блок переключения каналов и формирования непрерывного просветного сигнала, формируемые непрерывные сигналы усиливают в полосе параметрического преобразования, измеряют их узкополосные спектры, выделяют в спектрах верхние и (или) нижние боковые полосы, которые формируют и представляют в формате 2D и (или) 3D, регистрируют и с учетом параметрического и частотно-временного преобразования определяют в них признаки гидрофизических и геофизических полей и их пространственно-временную динамику. Кроме того, число приемных преобразователей n в линейной приемной антенне устанавливают в количестве 10 изделий, а расстояния между ними - половина длины просветной акустической волны. Кроме того, количество элементов антенны n соответствует масштабу частотно-временного преобразования принимаемых просветных сигналов. Кроме того, контролируемую среду озвучивают просветными акустическими сигналами стабильной частоты в диапазоне десятки - сотни Герц. Кроме того, операции измерения и формирования спектров измеряемых полей в формате 2D и (или) 3D синхронизируют с режимом цикличного переключения приемных каналов и формирования непрерывного сигнала. Технический результат: разработка технологий просветной акустической томографии характеристик гидрофизических и геофизических полей в морской среде, а также постоянное наблюдение и контроль их пространственно-временной динамики на акваториях протяженностью десятки - сотни километров в диапазоне частот, составляющем сотни - десятки - единицы килогерц, сотни - десятки - единицы - доли герца. 4 з.п. ф-лы, 10 ил.

Использование: гидрофизика, геофизика и радиофизика. Сущность изобретения: способ параметрического приема волн различной физической природы источников атмосферы, океана и земной коры в морской среде включает в себя пространственно-разнесенные по контролируемой акватории на десятки-сотни километров излучающие и приемные акустические преобразователи, сформированную между ними рабочую зону нелинейного взаимодействия и параметрического преобразования акустических просветных и измеряемых информационных волн, соединенные с преобразователями, соответственно, излучающий тракт формирования, усиления и излучения сигналов подсветки среды, а также тракт приема усиления, спектрального анализа нелинейно преобразованных просветных сигналов, выделения в спектрах верхней и (или) нижней боковых полос, определение и регистрации информационных сигналов, отличается тем, что рабочую зону нелинейного взаимодействия и параметрического преобразования просветных и измеряемых информационных волн формируют как многолучевую пространственно-развитую просветную параметрическую антенну, соизмеримую с протяженностью контролируемой акватории, для чего излучающий преобразователь располагают в центре акватории и включают в него три всенаправленных блока и устанавливают их на оси ниже и выше оси подводного звукового канала (ПЗК), а приемный преобразователь формируют аналогично излучающему преобразователю из трех одинаковых блоков, которые располагают по кругу или периметру на противоположной границе акватории и размещают их относительно ПЗК аналогично излучающим блокам, при этом каждый приемный блок формируют из трех одиночных гидрофонов, которые размещают в вертикальной плоскости по равнобедренным треугольникам, а их вершины направляют в сторону излучающих преобразователей, за счет этого совместно с излучающими преобразователями формируют просветную многолучевую параметрическую антенну, при этом в излучающий тракт измерительной системы включают последовательно соединенные блоки: звукового генератора стабилизированной частоты, усилителя мощности, трехканального блока согласования выхода усилителя с подводными кабелями и далее с излучающими акустическими преобразователями, а приемный тракт измерительной системы формируют как многоканальный и многофункциональный, который включает один канал анализа для выделения информационных сигналов, содержащий последовательно соединенные блоки: полосового усилителя, преобразователя временного масштаба сигналов в высокочастотную область, узкополосного анализатора спектров и функционально связанного с ним регистратора (рекордера), а также три канала измерения функций корреляции между средним и крайними гидрофонами приемных блоков, далее функций их взаимной корреляции для последующего измерения углов прихода многолучевых сигналов «сверху и снизу» по направлениям сформированных в вертикальной плоскости просветных параметрических антенн для каждого приемного блока, при этом в каждый из трех каналов корреляционного анализа включают последовательно соединенные: полосовые усилители, два параллельных блока измерения корреляционных функций сигналов между центральным и крайними гидрофонами приемных блоков, далее блоки измерения функций взаимной корреляции, выходы которых соединяют с общим блоком регистратора (рекордером), а также с блоком вычисления траектории лучей, как просветных параметрических антенн, и точек их пересечения на акватории (ЭВМ), при этом одиночные гидрофоны каждого приемного блока посредством кабелей через блок переключения каналов соединяют с многоканальным приемным трактом измерительной системы. Кроме того, нелинейно преобразованные просветные сигналы от каждого излучающего преобразователя принимают одиночными приемниками всех приемных блоков, что обеспечивает прием приходов просветных сигналов по отдельным лучам как параметрическим антеннам и их последующее разделение по углам приходов блоками корреляционного и взаимно корреляционного анализа. Кроме того, просветную параметрическую систему формируют как комплекс вертикальных многолучевых параметрических антенн и располагают их по кругу или периметру среды через 45 градусов, ориентируют их радиально от излучающего центра к периферии, что обеспечивает формирование общей пространственно-развитой параметрической системы мониторинга. Кроме того, расположенными в вертикальной плоскости приемными блоками совместно с излучающими блоками формируют многолучевые вертикальные параметрические антенны, при этом расстояние между преобразователями приемных блоков и их гидрофонов в вертикальной плоскости устанавливают в соответствии с корреляционными свойствами просветного акустического поля. Кроме того, в приемный и излучающий тракты системы включают блоки радиосвязи и обеспечивают согласование работы излучающего и приемного трактов измерительной системы и ее вхождения по каналам связи, предпочтительно спутниковой, в информационно-аналитический центр анализа многозвенной информации и управления системой. Кроме того, просветную радиогидроакустическую систему мониторинга наращивают (масштабируют) по пространству за счет объединения аналогичных подсистем мониторинга, разворачиваемых на других акваториях, и объединяют их по каналам радиосвязи (предпочтительно космической) в едином информационно-аналитическом центре, содержащем блок системного анализа информации, излучающий и приемный радиоблоки, и обеспечивают их двухстороннюю связь излучающим и приемным трактами системы освещения и мониторинга. Технический результат: разработка широкомасштабной радиогидроакустической просветной системы мониторинга как пространственно-развитой многолучевой параметрической антенны, соизмеримой с протяженностью контролируемой среды, обеспечивающей дальний и сверхдальний параметрический прием в морской среде волн различной физической природы атмосферы, океана и земной коры, формируемых естественными и искусственными источниками, явлениями и процессами в диапазоне частот, охватывающих десятки-единицы килогерц, сотни-десятки-единицы-доли Герца, включая сверхнизкочастотные, а также определение мест (дистанции и глубины) морских источников, возможности оперативной подстройки режимов работы системы к изменениям среды распространения просветных волн, а также к многообразию проявления информационных волн. 4 з.п. ф-лы, 17 ил.

Предлагаемое техническое решение представляет собой разработку структуры и принципов эксплуатации системы дальней (просветной) акустической томографии характеристик гидрофизических и геофизических полей среды и морского дна, а также контроль их пространственно-временной динамики. Информационные поля измеряются и регистрируются в широком диапазоне частот, составляющем сотни - десятки - единицы килогерц, сотни - десятки - единицы - доли герц, включая диапазон СНЧ-колебаний движущихся объектов как целого. Система акустической томографии гидрофизических и геофизических полей морской среды включает в себя размещенные на противоположных границах контролируемого участка среды излучающий и приемный акустические преобразователи, сформированную между ними рабочую зону нелинейного взаимодействия и параметрического преобразования просветных волн накачки среды с измеряемыми информационными, соединенные с преобразователями излучающий и приемный тракты системы мониторинга, при этом излучающий тракт системы включает в себя последовательно соединенные генератор сигналов стабилизированной звуковой частоты, усилитель мощности формируемых сигналов и блок согласования его выхода с подводным кабелем и далее с излучающим преобразователем, а приемный тракт системы включает в себя последовательно соединенные широкополосный усилитель нелинейно преобразованных просветных сигналов накачки, узкополосный анализатор спектра и функционально связанный с ним регистратор выделяемых анализатором информационных сигналов. Согласно изобретению приемный преобразователь измерительной системы сформирован как линейная дискретная антенна, включающая n элементов (гидрофонов), горизонтально размещенных в направлении излучающего блока системы, при этом каждый элемент антенны соединен с соответствующим входом n-канального предварительного усилителя, выходы которого через многожильный подводный кабель соединены с входами n-канального блока частотно-временного преобразования сигналов в высокочастотную область, а его выходы - с входами блока переключения приемных каналов и формирования непрерывного сигнала, выход которого соединен с входом широкополосного усилителя. Кроме того, число приемных преобразователей (гидрофонов) n в линейной приемной антенне устанавливают в количестве 10 элементов, а расстояния между ними - половине длины просветной акустической волны. Кроме того, масштаб частотно-временного преобразования принимаемых просветных сигналов устанавливают в соответствии с числом приемных каналов n. Кроме того, блок узкополосного анализа спектров функционально связан с блоком переключения приемных каналов и формирования непрерывного сигнала. Кроме того, контролируемую среду озвучивают просветными акустическими сигналами стабильной частоты в диапазоне частот десятки - сотни герц. Технический эффект предлагаемого изобретения заключается в решении задачи просветной акустической томографии характеристик гидрофизических и геофизических полей среды и морского дна, а также наблюдении их пространственно-временной динамики на акваториях протяженностью десятки - сотни километров, в диапазоне частот десятки - единицы килогерц, сотни - десятки - единицы - доли герц. 4 з.п. ф-лы, 10 ил.

Использование: изобретение относится к геофизическим методам исследований морской среды и предназначено для мобильного поиска месторождений нефти и газа, донных объектов различного назначения, дальнего упреждающего обнаружения признаков зарождения опасных морских явлений (разрушительных землетрясений и волн цунами) на морском шельфе. Сущность: способ мобильного поиска месторождений углеводородов, донных объектов, дальнего обнаружения признаков зарождения опасных морских явлений на морском шельфе включает облучение контролируемой морской среды в горизонтальной плоскости низкочастотными просветными, а в вертикальной плоскости зондирующими высокочастотными акустическими сигналами и формирование в области их пересечения рабочей зоны «тройного» нелинейного взаимодействия и параметрического преобразования волн низкочастотной и высокочастотной накачки среды и измеряемых информационных волн, излучаемых поисковыми углеводородными залежами при этом, подводный приемный акустический блок формируют из двух горизонтально разнесенных приемников и размещают в центре обследуемого участка акватории, причем в составе излучающего блока используют низкочастотный и высокочастотный акустические излучатели, при этом излучающий блок размещают на подвижном носителе, который при поиске источников информационных волн перемещают по границе обследуемой акватории, с использованием его формируют вертикальную и горизонтальную параметрические антенны, первая из которых расположена в направлении морского дна, а вторая в направлении приемного блока, при этом волны зондирующего высокочастотного сигнала, взаимодействовавшие с измеряемыми информационными сигналами, принимают горизонтально разнесенными приемниками просветных параметрических антенн, усиливают по каждому каналу в полосе частот параметрического преобразования, измеряют сигналы их разности фаз и переносят их временной масштаб в высокочастотную область, выделяют их узкополосные спектры, определяют в них и регистрируют параметрические составляющие нижней и верхней боковых полос, по которым с учетом параметрического и частотно-временного преобразования волн накачки, а также направлений параметрических антенн восстанавливают и фиксируют характеристики измеряемых информационных полей, соответствующие поисковым признакам месторождений углеводородов, например частотного диапазона, интенсивности, пространственно-временной и спектральной структуры, а также определяют и фиксируют направления их максимального проявления. Далее по этим направлениям излучающий блок перемещают в точку расположения приемного блока, затем проходят за него, при этом уточняют местоположения источников информационных сигналов по этой курсовой линии и фиксируют протяженность месторождения вдоль нее, подобным же образом, перемещая подвижный носитель переменными галсами, многократно пересекающим каждую курсовую линию, определяют контур площади месторождения углеводородов, выполняют наблюдение и измерение признаков пространственно-временной динамики их характеристик, по которым осуществляют идентификацию измеряемых информационных волн по их принадлежности к водным гидрофизическим или донным геофизическим. При обнаружении геофизических волн и измерении их спектральных характеристик результаты сравнивают с обобщенными эталонными спектрами и выявляют принадлежность информационных волн к конкретным типам скоплений углеводородов, например газовым, газоконденсатным или залежам с притоком газа, при этом накачку морской среды в вертикальной плоскости дополнительно к акустическим сигналам проводят высокочастотными электромагнитными сигналами, при этом идентификацию и выделение информационных волн на фоне инженерных помех обследуемой акватории осуществляют с учетом известной информации о вероятных характеристиках этих полей на основе информационно-аналитических технологий. Технический результат: обеспечение мобильного поиска залежей углеводородов на морском шельфе с высокой точностью определения площади ее залегания на морском дне, с повышенной надежностью идентификации измеряемых информационных полей. 2 з.п. ф-лы, 13 ил.

Использование: изобретение относится к гидроакустическим методам и реализующим их системам поиска углеводородных залежей, а также поиска донных объектов различного назначения и физической природы, предпочтительно на акваториях морского шельфа. Сущность: система мобильного поиска месторождений углеводородов и донных объектов, обнаружения признаков зарождения опасных морских явлений на морском шельфе включает в себя размещенные в среде излучающие и приемные акустические преобразователи, сформированную между ними рабочую зону нелинейного взаимодействия и параметрического преобразования измеряемых информационных волн и волн накачки среды, как параметрическую антенну, соединенные с преобразователями соответственно, тракт формирования и усиления низкочастотных просветных сигналов накачки среды, а также тракт приема, усиления, обработки, выделения и регистрации информационных сигналов, при этом протяженность рабочей зоны измерительной параметрической системы соответствует протяженности обследуемой акватории, для чего излучающий и приемный преобразователи акустических сигналов разнесены на ее противоположные границы, при этом излучающий преобразователь размещен на подвижном носителе и содержит низкочастотный и высокочастотный излучатели, первый из которых выполнен с возможностью горизонтального ориентирования его диаграммы направленности в сторону приемного преобразователя, при этом высокочастотный излучатель выполнен с возможностью ориентирования его диаграммы направленности на морское дно, кроме того, тракт формирования и усиления излучаемых сигналов накачки среды сформирован как двухканальный, содержащий низкочастотный и высокочастотный каналы, каждый из которых включает последовательно соединенные генератор стабилизированной частоты, усилитель мощности, блоки согласования выходов усилителей с подводными кабелями, которые подключены к соответствующим излучающим преобразователям, кроме того, приемный преобразователь включает два горизонтально разнесенных приемных блока, каждый из которых соединен с расположенным на поверхности моря радиомодулем, который по радиоканалу связан с приемным трактом системы, содержащим последовательно связанные с соответствующим каналом двухканального приемного радиоблока информационных сигналов, двухканальный широкополосный усилитель информационных сигналов, блок измерения разности фаз информационных сигналов, преобразователь временного масштаба информационных сигналов в высокочастотную область, блок узкополосного спектрального анализа и функционально связанный с ним регистратор спектров выделяемых информационных сигналов, при этом система содержит средства определения местоположения подвижных излучающих преобразователей в режиме реального времени. При этом система включает в себя блок спутниковой связи с центральным постом, выполненный с возможностью дистанционного управления ее работой, в процессе мобильного поиска углеводородов и донных объектов. Технический результат: обеспечение эффективного мобильного поиска залежей углеводородов и донных объектов различного назначения и физической природы, дальнее (упреждающее) обнаружение признаков зарождения опасных морских явлений на протяженных акваториях морского шельфа, определение места объектов и границ залежи углеводородов на морском дне с повышенной точностью, а также идентификацию измеряемых информационных волн, формируемых искусственными и естественными источниками, а также опасными явлениями морской среды и земной коры в широком диапазоне частот, охватывающим единицы килогерц - сотни - десятки - единицы - доли Герца. 13 ил.

Изобретение относится к устройству вертикального перемещения подводных аппаратов. Устройство вертикального перемещения состоит из лебедки с мотор-редуктором, заключенной в герметичный корпус. Крутящий момент передается к барабану лебедки через герметичный корпус с помощью магнитной муфты. Лебедка дополнена механизмом свободного хода с целью предотвращения запутывания троса при свободном всплытии подводного аппарата и перемещения с заданной скоростью. Достигается повышение надежности устройства. 2 ил.

Изобретение относится к области геофизики и может быть использовано для сейсмоакустических исследований на шельфе при выполнении разведочных работ нефтегазоносных месторождений. Заявлена малогабаритная автономная сейсмоакустическая станция (МАСАС), содержащая устанавливаемый на морском дне, всплывающий после отдачи балласта носитель аппаратуры (НА). НА включает в себя размещенные в герметичном сферическом контейнере бортовой вычислительный узел (БВУ), источник питания, трехкомпонентный сейсмоприемник, а также установленные снаружи герметичного контейнера гидрофон, ресивер для гидроакустической связи, устройство постановки и снятия НА с грунта. НА содержит также средства для поиска всплывшего НА, выполненные в виде проблескового маяка, спутниковой системы навигации типа «Глонасс», низкоорбитальной спутниковой системы связи типа «Гонец» и активного радиолокационного отражателя. Регистрирующий тракт состоит из четырехканального блока фильтрации и усиления. Из сигналов гидрофона и сейсмоприемников формируется массив отдельной выборки с длиной из шестнадцатиразрядных слов, подающихся на соответствующие каналы накопителя информации (НИ), представляющего собой твердотельную память из 4 флэш-карт с емкостью по 2 Гбайт каждая. Технический результат - обеспечение более достоверных данных площадных исследований. 5 ил.

Система поиска подводных морских месторождений углеводородов, включающая в себя размещенные в среде излучающий и приемный акустические преобразователи, выполненные с возможностью формирования между ними параметрической антенны, соединенные с ними соответственно, тракт формирования и усиления излучаемых сигналов накачки среды, а также тракт приема усиления, обработки, выделения и регистрации информационных сигналов, отличается тем, что излучающий и приемный преобразователи акустических сигналов разнесены на противоположные границы контролируемого участка акватории, при этом излучающий преобразователь размещен на подвижном носителе и содержит низкочастотный и высокочастотный излучатели, первый из которых выполнен с возможностью горизонтального ориентирования его диаграммы направленности в сторону приемного преобразователя, при этом высокочастотный излучатель выполнен с возможностью ориентирования его диаграммы направленности на морское дно, кроме того, тракт формирования и усиления излучаемых сигналов накачки среды сформирован как двухканальный, содержащий низкочастотный и высокочастотный каналы, каждый из которых включает последовательно соединенные генератор стабилизированной частоты, усилитель мощности, блоки согласования выходов усилителей с подводными кабелями, которые подключены к соответствующим излучающим преобразователям, кроме того, приемный преобразователь включает два горизонтально разнесенных приемных блока, каждый из которых соединен с расположенным на поверхности моря радиомодулем, который по радиоканалу связан с приемным трактом системы, содержащим последовательно связанные с соответствующим каналом двухканального приемного радиоблока информационных сигналов, двухканальный широкополосный усилитель информационных сигналов, блок измерения разности фаз информационных сигналов, преобразователь временного масштаба информационных сигналов в высокочастотную область, блок узкополосного спектрального анализа и функционально связанный с ним региcтратор спектров выделяемых информационных сигналов, кроме того, система содержит средства определения местоположения излучающего преобразователя и приемных блоков приемного преобразователя в режиме реального времени, кроме того, она включает в себя блок спутниковой связи с центральным постом, выполненный с возможностью дистанционного управление ее работой. Изобретение обеспечивает мобильность поиска углеводородных залежей на шельфе, при повышении надежности поиска на протяженных акваториях. 1 з.п. ф-лы, 8 ил.

Способ поиска месторождений углеводородов на морском шельфе, включающий генерирование лоцирующего сигнала в воде, регистрацию информационных волн в диапазоне инфразвуковых частот посредством подводного приемного акустического блока и обработку информационного сигнала с проверкой наличия поисковых признаков месторождений углеводородов, отличается тем, что в пределах обследуемого участка акватории формируют зоны нелинейного взаимодействия и параметрического преобразования лоцирующего сигнала с информационными сигналами, проявляющимися на акватории, при этом подводный приемный акустический блок формируют из двух горизонтально разнесенных приемников и размещают в центре обследуемого участка акватории, причем в составе излучающего блока используют низкочастотный и высокочастотный акустические излучатели, при этом излучающий блок размещают на подвижном носителе, который при поиске источников информационных сигналов перемещают по границе обследуемого участка акватории, в процессе которого формируют вертикальную и горизонтальную параметрические антенны, первая из которых направлена в направлении морского дна, а вторая в направлении приемного блока, при этом волны лоцирующего сигнала, взаимодействовавшие с измеряемыми информационными сигналами, принимают горизонтально разнесенными приемниками, двухканально усиливают в полосе частот параметрического преобразования, измеряют их разность фаз и переносят временной масштаб в высокочастотную область, выделяют их узкополосные спектры, определяют в них и регистрируют параметрические составляющие нижней и верхней боковых полос, по которым с учетом параметрического и частотно-временного преобразования волн накачки, а также направлений параметрических антенн восстанавливают и фиксируют характеристики измеряемых информационных полей, соответствующие поисковым признакам месторождений углеводородов, например частотный диапазон, интенсивность, пространственно-временную и спектральную структуру, а также определяют и фиксируют направления их максимального проявления, далее по этим направлениям излучающий блок перемещают в точку расположения приемного блока, затем проходят за него, при этом уточняют местоположения источников информационных сигналов по этой курсовой линии и фиксируют протяженность месторождения вдоль нее, подобным же образом, перемещая подвижный носитель по траекториям, пересекающим, по меньшей мере, первую курсовую линию, оконтуривают площадь месторождения углеводородов, выполняют наблюдение и измерение признаков пространственно-временной динамики их характеристик, а по ним осуществляют идентификацию волн на их принадлежность к водным гидрофизическим или донным геофизическим, при обнаружении геофизических волн и фиксации их спектральных характеристик полученные результаты сравнивают с обобщенными эталонными спектрами и выявляют принадлежность информационных волн к конкретным типам скоплений углеводородов, например газовым, газоконденсатным или залежам с притоком газа. Кроме того, низкочастотные волны горизонтальной накачки, используемые для формирования горизонтальной параметрической антенны, формируют в диапазоне десятки - сотни герц. Изобретение обеспечивает мобильность поиска углеводородных залежей на шельфе при повышении надежности поиска на протяженных акваториях. 1 з.п. ф-лы, 8 ил.

Изобретение относится к гидроакустике и может быть использовано в просветных приемоизлучающих системах контроля протяженных морских акваторий и комплексного мониторинга гидрофизических полей среды различной физической природы

Изобретение относится к гидроакустике и может быть использовано в просветных приемоизлучающих системах контроля протяженных морских акваторий и комплексного мониторинга гидрофизических полей среды различной физической природы

Изобретение относится к области гидроакустики и может быть использовано в гидроакустических системах гидролокации или передачи информации в виде сигналов различной физической природы, в широкой полосе частот, а также измерительных приемоизлучающих комплексах

Изобретение относится к гидроакустике и предназначено для использования в активно-пассивных и параметрических системах контроля протяженных морских акваторий, измерения характеристик гидрофизических полей, формируемых естественными и искусственными источниками, инженерными сооружениями, а также стихийными морскими явлениями, например, внутренними волнами, землетрясениями или цунами

Изобретение относится к области гидроакустики и может быть использовано в гидроакустических системах дальнего мониторинга

Изобретение относится к гидроакустике и может быть использовано в просветных приемоизлучающих системах контроля дальнего действия

Изобретение относится к области гидроакустики и может быть использовано в гидроакустических системах дальнего мониторинга

Изобретение относится к конструктивному выполнению средств гидрофизических исследований и может быть использовано, например, при реализации систем акустической томографии или систем пассивного обнаружения шумящих объектов

Изобретение относится к области сейсмологии и может быть использовано для определения предвестников сильных землетрясений и цунамигенности этих землетрясений

Изобретение относится к области сейсмологии и может быть использовано для определения предвестников сильных землетрясений и цунами

Изобретение относится к морской технике, в частности к устройствам, предназначенным для наблюдения за подводной средой

Изобретение относится к морской технике, в частности к устройствам, предназначенным для наблюдения за подводной средой

Изобретение относится к области сейсмологии и может быть использовано для определения предвестников сильных землетрясений и цунами

Изобретение относится к области сейсмологии и может быть использовано для определения предвестника сильных землетрясений и цунами

Изобретение относится к области сейсмологии и может быть использовано для определения предвестника сильных землетрясений

Изобретение относится к области сейсмологии и может быть использовано для определения предвестника сильных землетрясений

 


Наверх