Патенты автора Борисов Михаил Владимирович (RU)

Настоящее изобретение относится к средствам адаптивной оптики и может быть использовано для стабилизации частоты кольцевого лазера в системах регулировки периметра кольцевого резонатора лазерного гироскопа. Технический результат достигается кольцевым резонатором с моноблоком из ситалла СО-115М, где для стабилизации частоты кольцевого лазера используется пьезокорректор, содержащий подложку зеркала и пьезопривод, включающий мембрану. При этом согласно первому варианту выполнения пьезокорректора, в осевом отверстии центральной части мембраны установлен винт, связанный с центральной передаточной частью подложки через промежуточный металлический диск, выполненный с высотой, удовлетворяющей условию: , где:Tmin=-60°C - минимальная температура моноблока;Tmax=+80°C - максимальная температура моноблока;Р - периметр кольцевого резонатора при номинальной температуре моноблока;θ - угол падения лазерного луча на зеркало;hД - высота диска при номинальной температуре моноблока;αД - температурный коэффициент линейного расширения материала диска;αКР - температурный коэффициент линейного расширения материала моноблока; - отношение изгибных жесткостей мембран, соответственно, подложки зеркала СЗ и пьезодвигателя СП.Согласно второму варианту выполнения пьезокорректора, центральная часть мембраны пьезопривода жестко связана с внутренней поверхностью центральной передаточной части подложки, а стержневая часть каждой лапки оправы пьезопривода выполнена с высотой, удовлетворяющей условию: , где:hЛ - высота стержневой части лапок при номинальной температуре моноблока;αЛ - температурный коэффициент линейного расширения материала стержневой части лапок. Технический результат - повышение качества стабилизации частоты кольцевого лазера в системах регулировки периметра кольцевого резонатора лазерного гироскопа. 2 н.п. ф-лы, 3 ил.

Изобретение относится к гироскопической технике. Кольцевой лазер включает резонатор, состоящий из корпуса, в котором выполнено отверстие для монтажа на виброподвес. В корпусе планарного резонатора внутри выполнен магистральный канал, проходящий по периметру корпуса. На боковых гранях корпуса установлены отражающие элементы, сообщающиеся с магистральным каналом посредством пазух. По меньшей мере на одном отражающем элементе установлена призма, на которой установлен по меньшей мере один фотоприемник, и по меньшей мере на одном отражающем элементе установлен пьезодвигатель. Кроме того, на боковых гранях корпуса установлен один катод, два анода, один из которых анод-штенгель, причем указанные один катод и два анода сообщаются с магистральным каналом посредством пазух. Также лазер включает виброподвес, обеспечивающий раскачку кольцевого лазера за счет изгибных колебаний плоских пружин, информационный и мощностной фотоприемники, пьезоэлектрический преобразователь и смесительную призму. В корпусе кольцевого лазера, в стенках отверстия для крепления корпуса резонатора на виброподвес, выполнены четыре паза, расположенные таким образом, что обеспечивается крепление плоских пружин опоры в упомянутых пазах. Технический результат заключается в обеспечении возможности увеличения амплитуды раскачки виброподвеса. 2 ил.

Изобретение относится к измерительной технике, в частности к области преобразования параметров вращения в электрический сигнал с помощью гироскопов, в которых чувствительным элементом служит кольцевой лазер, и может быть использовано, например, в системах навигации. Бесплатформенная инерциальная навигационная система, состоящая из блока чувствительных элементов, вычислительной навигационной системы, причем блок чувствительных элементов состоит из блока акселерометров, преобразователя сигналов акселерометров и блока лазерных гироскопов, включающих кольцевой лазер. Кольцевой лазер состоит из резонатора, виброподвеса и фотоприемника, пьезоэлектрического преобразователя и смесительной призмы. Благодаря выполнению в корпусе кольцевого лазера, в стенках отверстия для крепления корпуса резонатора на виброподвес, четырех пазов, расположенных таким образом, что обеспечивается крепление плоских пружин опоры в упомянутых пазах, достигается возможность увеличения длины плоских пружин опоры, что в свою очередь позволяет увеличить амплитуду раскачки виброподвеса, а соответственно устранить явление синхронизации встречных волн и уменьшить величину случайной компоненты погрешности лазерного гироскопа. 2 ил.
Изобретение относится к области микролитографии. Рисунок преобразуют в растр в цифровой форме и записывают информацию об амплитуде и фазе, характеризующих каждую точку растра. Рассчитывают необходимые параметры элементов голограммы, для чего переводят элементы цифрового растра изображения рисунка в цифровой растр будущей голограммы. В каждой точке будущей голограммы рассчитывают картину дифракции. Рассчитывают интерференционную картину, полученную от взаимодействия расчетной картины дифракции с расчетным волновым фронтом от виртуального опорного источника излучения. Определяют функцию пропускания голограммы и выделяют в ней области, которые после бинаризации дадут прозрачные элементы недопустимо малого размера, физически не пропускающие свет, после чего изменяют функцию пропускания, обеспечивая увеличение размера этих элементов. Полученный результат используют для формирования дифракционной структуры голограммы на носителе и создают голограмму в виде набора прозрачных дискретных элементов в непрозрачном слое, нанесенном на прозрачную подложку. Проводят оптическую коррекцию увеличенных элементов, обеспечивающую пропускание этими увеличенными элементами количества света в соответствии с первичной функцией пропускания. Коррекцию осуществляют путем размещения на непрозрачном слое слоя поглощающего вещества с известным коэффициентом поглощения для восстанавливающего изображения излучения, а области над неувеличенными элементами выполняют в нем прозрачными. Технический результат - получение рисунка с высокими технологическими параметрами, повышение контраста получаемого рисунка и снижение уровня шума. 12 з.п. ф-лы.
Предложен cпособ изготовления голографических изображений рисунка. В способе преобразуют изображение рисунка в растр в цифровой форме. Записывают информацию об амплитуде и фазе, характеризующих каждую точку растра как протяженный или точечный излучатель. Рассчитывают параметры записывающего пучка излучения для чего переводят элементы цифрового растра изображения рисунка в цифровой растр будущей голограммы. Рассчитывают картину дифракции в каждой точке будущей голограммы, создаваемую от всей совокупности излучателей. Рассчитывают интерференционную картину, полученную от взаимодействия расчетной картины дифракции с расчетным волновым фронтом от виртуального опорного точечного или протяженного источника излучения, идентичным обращенному реальному волновому фронту источника, который будет использоваться при формировании голографического изображения рисунка. Используют полученный результат в качестве сигнала модуляции пучка излучения, используемого для формирования дифракционной структуры голограммы на носителе, и создают голограмму. Используют построчное сканирование носителя пучком излучения, модулированным по интенсивности, по его диаметру и распределению интенсивности внутри записывающего пятна. Техническими результатами являются уменьшение отклонений геометрии рисунка от заданного, увеличение разрешающей способности надежности записи временного списка дефектов. 3 з.п. ф-лы.
Изобретение относится к оптике
Изобретение относится к оптике

 


Наверх