Патенты автора Солощев Александр Николаевич (RU)

Изобретение относится к области геофизики. Технический результат заключается в повышении достоверности прогнозирования цунами. Способ основан на определении параметров волнения с помощью устройств, соединенных трактом связи с наземными станциями приема и обработки сейсмических сигналов службы предупреждения о цунами, установленными в прибрежных зонах цунамигенных регионов. В качестве устройств определения параметров волнения используют устройства, установленные на борту летательных аппаратов, выполняющих регулярные рейсы в цунамигенных регионах, с возможностью их взаимодействия с навигационными спутниковыми аппаратами (ГЛОНАСС или GPS) и с водной поверхностью цунамигенных регионов (океанов), при этом для определения параметров волнения при измерении высоты от летательного аппарата до водной поверхности вычисляют геодезические координаты летательного аппарата (ϕо, λо, Hо) со смещением, обусловленным наклоном отражающей водной поверхности (океанов) относительно референц-эллипсоида, при этом исключают ионосферную погрешность путем обработки спутниковой навигационной информации методом PrecisePointPosition, в свою очередь, на наземных станциях приема и обработки сейсмических сигналов службы предупреждения о цунами по измеренным параметрам выполняют моделирование колебаний уровня водной поверхности океана, вызываемых атмосферными возмущениями с выделением сигнала цунами на шельфе с учетом неоднородной береговой линии и в открытом океане на фоне естественного длинноволнового шума с выделением длинных волн, для которых возникает эффект резонансного отражения, включая уединенные волны в форме холмов. Прогноз возникновения волны цунами составляют по двум выделенным уединенным волнам в форме холмов, следующих друг за другом. 1 з.п. ф-лы, 2 ил.

Группа изобретений относится к области радиотехнических измерений и может быть использована для определения уклонений отвесной линии (УОЛ), уточнения параметров вращения Земли и для решения других геодезических задач на акваториях. В способе, включающим этапы: приема антенной с диаграммой направленности вверх на борту подвижной платформы (самолета, аэростата) над поверхностью Земли прямых сигналов, имеющих по меньшей мере две разные несущие частоты, передаваемых спутниками ГНСС, приема антенной с диаграммой направленности вниз на борту платформы сигналов, отраженных водной поверхностью Земли и имеющих, по меньшей мере, две разные несущие частоты, сравнения несущих фаз принятых прямых сигналов и отраженных сигналов на несущих частотах, и определение от сравнений участка высоту поверхности, при определении высоты поверхности вычисляют геодезические координаты нижней антенны со смещением, обусловленным наклоном отражающей морской поверхности относительно референц-эллипсоида, при этом приемники передаваемых спутниками сигналов ГНСС устанавливают на n самолетах, пересекающих воздушное пространство над акваторией, по вычисленным геодезическим координатам подвижной платформы вычисляют значения проекций УОЛ по широте и долготе, при этом исключают ионосферную погрешность путем обработки спутниковой навигационной информации методом Precise Point Position, дополнительно размещают в регионе опорные станции для измерения эфемеридных погрешностей и погрешностей расхождения шкал времени. Технический результат – расширение функциональных возможностей в части определения УОЛ с одновременным повышением производительности съемки при выполнении высотометрии Земли над водной поверхностью. 2 н.п. ф-лы, 2 ил.

Изобретение относится к разведке с использованием магнитных полей и может быть использовано для обнаружения подводных ферромагнитных объектов. Сущность: буксируют два источника магнитного поля вдоль полосы обследования. Причем границы полосы обследования задают путем рассеивания ферромагнитного материла, сформированного в виде масс в 1 м3, размещенных на расстоянии 80-170 м друг от друга вдоль оси границы с образованием четырехугольника. Осуществляют посредством блока управления попеременной работы буксируемых источников магнитного поля регистрацию суммарного магнитного поля буксируемых источников и ферромагнитных масс первичным трехкомпонентным преобразователем магнитного поля. Усиливают и преобразуют зарегистрированные сигналы суммарного магнитного поля буксируемых источников и ферромагнитных масс вторичным преобразователем. Передают усиленные и преобразованные сигналы суммарного магнитного поля буксируемых источников и ферромагнитных масс в вычислительный блок. В вычислительном блоке определяется сигнал, обусловленный наличием ферромагнитных масс или подводного ферромагнитного объекта. Передают сигнал с вычислительного блока на исполнительный блок с последующей его ретрансляцией в блок управления. Блок управления обеспечивает движение буксируемых источников магнитного поля в заданных границах полосы обследования путем определения координат сигнала в навигационном модуле. Предварительно выполняют батиметрическую съемку, посредством многолучевого эхолота, акустическое зондирование рельефа дна гидролокатором бокового обзора, по эхо и теневым контактам выявляют обнаруженные подводные объекты, выполняют картирование рельефа дна с выявлением линий водораздела и водосливных линий, дополнительно выполняют зондирование обнаруженного объекта, посредством лазерно-лучевого источника с передачей изображения на видеосистему с выделением границ на изображении посредством оператора Собела и детектора Канне. Система для обнаружения подводных ферромагнитных объектов состоит из измерительной системы магнитного поля, которая включает два буксируемых источника магнитного поля, подключенных посредством кабель-тросов соответственно к блоку питания через блок управления, два буксируемых первичных трехкомпонентных преобразователя магнитного поля, подключенных посредством кабель-тросов соответственно ко вторичному преобразователю через блок управления, вычислительный блок, вход которого подключен к выходу вторичного преобразователя, а выход подключен к входу исполнительного блока, многолучевого эхолота и гидролокатора бокового обзора, которые подключены через блок управления и вторичный преобразователь к вычислительному блоку, отличающаяся тем, что введены лазерно-лучевой модуль, видеосистема, блок обработки изображений, который через блок управления соединен с лазерно-лучевым модулем, многолучевым эхолотом, гидролокатором бокового обзора и вычислителем. Технический результат: повышение достоверности обнаружения подводных объектов. 2 н. и 1 з.п. ф-лы, 6 ил.
Изобретение относится к системам освещения ледовой обстановки и предотвращения воздействия ледовых образований на морские объекты хозяйственной деятельности. Сущность: система включает средства мониторинга гидрометеорологической обстановки в регионе размещения морских объектов хозяйственной деятельности, средства определения характеристик ледовых образований, средства защиты от воздействия ледовых образований, средства отображения ледовых образований, систему контроля состояния кессона, командно-управляющий комплекс, соединенный со средствами мониторинга гидрометеорологической обстановки, средствами определения характеристик ледовых образований и средствами защиты от воздействия ледовых образований. Причем средства защиты от воздействия ледовых образований выполнены способными выдерживать нагрузку, сравнимую с критической нагрузкой, возникающей при ударе ледяного массива. Система контроля состояния кессона включает датчик деформации для измерения ледовых нагрузок на кессон, инклинометр для измерения наклонов кессона, грунтовой динамометр для измерения нагрузки на грунт, преобразователь давления (пьезометр) для измерения и оценки возможного повышения избыточного давления в грунтах от динамических горизонтальных нагрузок. Средства защиты от воздействия ледовых образований выполнены в виде подводных и надводных модулей. При этом подводные модули снабжены холодильными агрегатами. Надводные модули выполнены в виде выдвижных конструкций и беспилотных летательных аппаратов, снабженных устройствами автоматического дозирования химических реагентов, наносимых на ледовое образование, в виде карбида кальция. Технический результат: повышение надежности защиты морских объектов хозяйственной деятельности в периоды льдообразования, дрейфа и торошения ледяных полей, расположенных в условиях как мелкого, так и глубокого морей. 2 з.п. ф-лы.

Изобретение относится к области радиотехники, а именно: для использования спутниковых навигационных систем (СНС), и может быть применено для коррекции инерциальной навигационной системы (ИНС) подводного объекта при нахождении в Северном Ледовитом океане (СЛО) подо льдом на горизонте плавания

 


Наверх