Патенты автора Фаррахов Рузиль Галиевич (RU)

Изобретение относится к области получения комбинированных покрытий для титана на основе биологически активных RGD-функционализированных бифосфонатных производных Arg-Gly-Asp-Cys-(RGDC)-замещенных ({[(2,5-диоксо-пирролидин-1-ил)алканоил]амино}-1-гидроксиалкан-1,1-диил)бисфосфоновых кислот и применению указанных соединений в качестве органических покрытий для моделирования биологической активности ПЭО-модифицированной поверхности титановых имплантатов. RGD-функционализированные бифосфонатные производные Arg-Gly-Asp-Cys-(RGDC)-замещенных ({[(2,5-диоксо-пирролидин-1-ил)алканоил]амино}-1-гидроксиалкан-1,1-диил)бисфосфоновых кислот наносят путем физико-химической адсорбции из водных растворов с концентрацией ~10-3 М/л в течение 1 часа на титан (Grade 2) с неорганическим оксидированным пористым подслоем, полученным в ходе плазменно-электролитического оксидирования. Технический результат – получение покрытий, улучшающих адгезию и пролиферацию мезенхимальных стволовых клеток, фибробластов и остеобластоподобных клеток. 2 н.п. ф-лы, 3 пр., 3 ил.

Использование: для определения толщины покрытия в процессе плазменно-электролитического оксидирования. Сущность изобретения заключается в том, что способ определения толщины покрытия при плазменно-электролитическом оксидировании включает измерение остаточного значения напряжения, отличающийся тем, что измеряют остаточное значение напряжения UOCT в момент непосредственно перед подачей положительного импульса напряжения после паузы в импульсном униполярном режиме и в момент непосредственно перед подачей отрицательного импульса напряжения после паузы в импульсном биполярном режиме, при этом толщину покрытия определяют по заданной формуле. Технический результат: обеспечение возможности повышения точности определения толщины покрытия, и, как следствие, уменьшения количества энергопотребления. 2 табл., 7 ил.

Использование: для измерения толщины покрытия в ходе процесса плазменно-электролитического оксидирования вентильных металлов. Сущность изобретения заключается в том, что способ определения толщины покрытия включает измерение напряжения в процессе получения покрытия, где измеряют среднее и амплитудное значения напряжения обработки, затем находят их отношение, а толщину покрытия h определяют по формуле где k1 и k2 - эмпирические коэффициенты, зависящие от природы обрабатываемого материала и состава электролита, определяемые по тарировочным кривым; Ucp и Umax - среднее и амплитудное значения напряжения обработки соответственно. Технический результат: повышение точности определения толщины оксидного покрытия для своевременного прекращения процесса плазменно-электролитического оксидирования. 5 ил., 1 табл.

Изобретение относится к области гальванотехники, в частности к твердому анодированию алюминиевых сплавов. Способ определения толщины оксидного покрытия в процессе твердого анодирования алюминиевого сплава включает измерение плотности тока и времени анодирования, а также измеряют напряжение на электролизере, рассчитывают удельное энергопотребление а толщину покрытия рассчитывают по формуле h=k⋅Q, где Q - удельное энергопотребление, кВт⋅ч/дм2, t - время анодирования, ч, J - плотность тока, A/дм2, U - напряжение на электролизере, В, h - толщина покрытия, мкм, k - эмпирический коэффициент, определяемый по тарировочной кривой зависимости h, мкм, и Q, кВт⋅ч/дм2, для анодируемого алюминиевого сплава и состава электролита. Технический результат - повышение точности определения толщины покрытия. 1 табл., 3 пр., 8 ил.

Изобретение относится к измерительной технике и может быть использовано для бесконтактного контроля температурных режимов прокатных станов, металлургических и энергетических установок

 


Наверх