Патенты автора Доломатов Михаил Юрьевич (RU)

Изобретение относится к области нефтепереработки, в частности к способу получения высокоанизотропного нефтяного игольчатого кокса замедленным коксованием. Способ осуществляют с использованием в качестве исходного сырья декантойля. Способ включает формирование вторичного сырья с последующим его нагревом до температуры коксования и коксованием в коксовых камерах с получением игольчатого кокса и дистиллята коксования. Далее его подают в нижнюю часть ректификационной колонны для фракционирования с получением углеводородного газа, бензина, легкого и тяжелого газойлей коксования и кубового остатка, пропарку кокса водяным паром и охлаждение водой, подачу продуктов пропарки и охлаждения в абсорбер, снабженный массообменными устройствами, для абсорбции высококипящих нефтепродуктов и разделения продуктов пропарки и охлаждения в абсорбере на паровую и жидкую фазы, при котором декантойль смешивают с кубовым остатком из ректификационной колонны. Затем полученную смесь нагревают до 400-450°С и подают в реактор термополиконденсации, где ее подвергают термополиконденсации в течение от 1,0 до 1,5 ч под давлением от 5 до 10 кг/см2. После чего остаток термополиконденсации выводят из реактора термополиконденсации и смешивают с тяжелым газойлем коксования для формирования вторичного сырья в соотношении 1:(0,3-0,9). Техническим результатом заявленного изобретения является увеличение выхода игольчатого кокса с одновременным улучшением его структурной организации. 5 з.п. ф-лы, 1 ил., 2 табл., 5 пр.

Изобретение может быть использовано при производстве терморезисторов и предохранителей датчиков температуры. Способ получения нефтеполимерных композиционных материалов на основе гудрона и полиэтилена включает предварительное установление графических зависимостей удельного электрического сопротивления и температуры размягчения композиционного материала от его состава. По установленным графическим зависимостям проводят подбор состава композиционного материала. Затем получают указанный состав путем смешения гудрона и полиэтилена на установке получения нефтеполимерного композиционного материала. Установка включает блок подготовки сырья, состоящий из сырьевых емкостей 1, 11, 9, сырьевых насосов 8, 10 и дезинтегратора 2, блок смешения, состоящий из двух реакторов 3 и 4 периодического действия с рамными мешалками, и блок вывода товарной продукции. Изобретение обеспечивает получение нефтеполимерных терморезистивных композиционных материалов с заранее заданными удельным электрическим сопротивлением и температурой размягчения. 2 н. и 2 з.п. ф-лы, 4 ил., 2 пр.

Изобретение относится к способам определения ширины запрещенной зоны темновой и фотопроводимости органических полупроводников на основе гетероатомных соединений. Способ определения ширины запрещенной зоны темновой и фотопроводимости органических полупроводников на основе гетероатомных соединений включает регистрацию спектров поглощения образцов в оптически прозрачных растворителях в УФ и (или) видимой областях, при этом и определяются по IA, вычисленному по электронному спектру в ультрафиолетовом и (или) видимом диапазонах. Технический результат заключается в упрощении способа и повышении его экспрессности и информативности за счет одновременного определения ширины запрещенной зоны темновой и фотопроводимости по интегральному параметру от автокорреляционной функции. 4 табл., 1 ил.

Изобретение относится к способу подготовки высоковязкой нефти для ее транспортировки по трубопроводу. Способ включает смешение высоковязкой нефти с добавкой, последующий термокрекинг полученной смеси и разделение продуктов термокрекинга на газопаровую и жидкую фазы. При этом в качестве добавки используют кубовый остаток ректификации этилбензола в количестве 2-4 мас.% на исходное сырье, а целевой продукт - термообработанную нефть получают смешением жидкой фазы термокрекинга и стабильного легкого дистиллята газопарожидкостной смеси продуктов термокрекинга. 1 ил., 4 табл.

Изобретение относится к области физических измерений и касается способа определения сродства к электрону молекул полициклических ароматических углеводородов. Способ включает в себя регистрация и исследования спектров поглощения образцов в ультрафиолетовой и видимой области спектра. Сродство к электрону определяется по относительному эмпирическому автокорреляционному параметру μ, представляющему собой отношение автокорреляционных функций, вычисленных по электронному спектру. Сродство к электрону определяют по формуле: СЭ=1,503-0,19134*μ, где - относительный эмпирический автокорреляционный параметр, где - интеграл автокорреляционной функции в УФ-области, - интеграл автокорреляционной функции в УФ- и видимой областях спектра. Технический результат заключается в обеспечении возможности применения способа к сложным молекулярным, многокомпонентным и метастабильным веществам, повышении точности и скорости измерений. 1 табл.

Изобретение относится к способу подготовки высоковязкой нефти для перекачки по трубопроводу. Способ включает термообработку нефти путем нагрева в теплообменниках и печи термокрекинга, последующее разделение продуктов термокрекинга на паровую и жидкую фазы в испарителе, закалочное охлаждение продуктов термокрекинга перед подачей в испаритель, применение жидкой фазы после доохлаждения в качестве компонента нефти, закачиваемой в трубопровод, последующее разделение паровой фазы продуктов термокрекинга в газосепараторе на углеводородный газ, используемый в качестве топлива печи термокрекинга, и легкий дистиллят, который подвергают вторичному разделению на углеводородный газ и стабильный легкий дистиллят в колонне стабилизации, снабженной насадкой, причем поток углеводородного газа из колонны стабилизации смешивают с потоком углеводородного газа из газосепаратора, а стабильный легкий дистиллят после нагрева в кипятильнике используют частично в качестве горячей струи, подаваемой в нижнюю часть колонны стабилизации, частично после охлаждения в холодильнике - в качестве острого орошения, подаваемого в верхнюю часть колонны стабилизации, а балансовое количество стабильного легкого дистиллята смешивают с охлажденной жидкой фазой испарителя и подают на перекачку. При этом исходную нефть нагревают в конвекционной камере печи до температуры не более 360°C с последующим разделением ее в дополнительном испарителе на две части, одну из которых направляют в радиантную камеру, а другую после охлаждения в сырьевом теплообменнике - в сборник дистиллята, при этом одну часть дистиллята используют для закалочного охлаждения продуктов термокрекинга, а другую - в качестве разбавителя исходной высоковязкой нефти перед операцией обессоливания и обезвоживания в электродегидраторе. Предлагаемый способ позволяет уменьшить суммарный выход газов и получить термообработанную нефть с более низкими значениями плотности, вязкости и коксуемости и с более высоким выходом. 1 ил., 3 табл.

Изобретение относится к способам определения потенциалов ионизации и сродства к электрону органических молекул кислород- и азотсодержащих соединений. Целью изобретения является повышение точности методов определения ПИ и СЭ и его распространение на другие классы соединений, которые не относятся к ароматическим молекулам. Поставленная цель достигается за счет использования нового способа определения потенциалов ионизации и сродства к электрону молекул кислород- и азотсодержащих соединений. Способ определения потенциалов ионизации и сродства к электрону молекул кислород- и азотсодержащих соединений, включающий регистрацию спектров поглощения в химически чистых растворах образцов в ультрафиолетовой и видимой областях, при этом потенциал ионизации и сродство к электрону определяется по автокорреляционной функции, вычисленной по электронному спектру в видимом и (или) УФ-диапазонам. Потенциал ионизации и сродство к электрону определяются по формулам:ПИ=α1+α2АКФ,СЭ=β1+β2АКФ,где ПИ - потенциал ионизации, эВ; СЭ - сродство к электрону, эВ; АКФ - автокорреляционная функция, 1015 Гц; (α1, α2), (β1, β2) - эмпирические коэффициенты, постоянные для близких по химической природе молекул, размерность которых эВ и эВ⋅10-17⋅Гц-1 соответственно. 4 табл.

Изобретение относится к способам анализа пищевых продуктов, а именно к способам оценки качества пчелиного меда. Изобретение может быть использовано в пищевой промышленности для распознавания подлинного и фальсифицированного продукта. Целью изобретения является повышение скорости анализа, сокращение аппаратурной базы, уменьшение трудоемкости, упрощение анализа, уменьшение объема анализируемых образцов. Способ оценки подлинности меда включает регистрацию спектров поглощения образцов меда и сахарозы в химически чистых растворах, при этом подлинность меда оценивается по соотношению автокорреляционных функций спектров меда и сахарозы (Ас(мед), Ас(сах)), вычисленных по электронным спектрам в УФ-диапазоне (190-380 нм), при этом подлинность меда оценивается по соотношению, мед считается подлинным при Ω>12,79. 3 пр., 3 табл.

Изобретение относится к способам идентификации многокомпонентных углеводородных систем. Способ включает отбор и регистрацию спектров растворов в видимой области электромагнитного излучения, во взвешенную колбочку объемом 50 мл берется навеска пробы 0,1-0,2 г, затем в колбочку со взвешенной пробой приливается 30-40 мл толуола, после полного растворения продукта в толуоле колбочка с раствором взвешивается и определяется концентрация раствора по формуле: с = (навеска, г*1000)/(вес раствора, г*0,8669), затем раствор наливается в прозрачную кварцевую кювету и с помощью спектрофотометра фиксируется оптическая плотность D на длинах волн λ=380-780 нм с шагом Δλ=1 нм, после чего определяются значения удельного коэффициента поглощения k(λ) (л/(г⋅см)), на тех же длинах волн по закону Бугера-Ламберта-Бера: k(λ)=D(λ)/(c⋅l), где l - толщина поглощающего слоя; с - концентрация раствора. Объекты идентифицируются по статистическим параметрам сигнала электронного абсорбционного спектра: математическое ожидание, дисперсия, автоковариационная и автокорреляционная функции распределения спектра, с последующим сравнением этих параметров с параметрами эталонов, при этом расчет статистических параметров проводят по формулам. В случае соответствия полученных значений рассчитываемых статистических параметров значениям эталона определяют принадлежность исследуемого объекта. Целью изобретения является идентификация многокомпонентных углеводородных систем по статистическим параметрам сигнала электронного абсорбционного спектра в видимой области, который подходит как для разбавленных в растворителе, так и для неразбавленных многокомпонентных углеводородных систем. 2 н.п. ф-лы, 1 табл., 3 пр.

Изобретение относится к измерительной технике и может найти применение в процессах определения эффективного потенциала ионизации и эффективного сродства к электрону многокомпонентных ароматических конденсированных сред (органические полупроводники на основе ароматических углеводородов и смесей, нефтяные смолы, смолы пиролиза, каменноугольные смолы, высококипящие нефтяные фракции, легкие и тяжелые газойли коксования, каталитического крекинга деасфальтизаты, экстракты селективной очистки масляных фракций, асфальтосмолистые вещества, битуминозные материалы, кубовые остатки процессов нефтехимпереработки). Технический результат – расширение функциональных возможностей. Для этого эффективные потенциал ионизации и сродство к электрону определяются по координате синего цвета BsRGB, определяемой в колориметрической системе координат sRGB по фотоизображению растворов многокомпонентных конденсированных сред, которое регистрируется с люминесцентным источником излучения. При этом достигается повышение скорости определения эффективного потенциала ионизации (ЭПИ) и эффективного сродства к электрону (ЭСЭ), которая превышает время изменения физической структуры материала и его химического состава. 2 табл.

Изобретение относится к области оптических измерений и касается способа определения потенциалов ионизации молекул полициклических ароматических углеводородов. Способ включает в себя регистрацию спектров поглощения в химически чистых растворах образцов в ультрафиолетовой и видимой области. Потенциал ионизации определяется по относительному эмпирическому автокорреляционному параметру μ, представляющему собой отношение автокорреляционных функций, вычисленных по электронному спектру. Потенциал ионизации определяется по формуле: ПИ=6,0516+1,57*μ, где - относительный эмпирический автокорреляционный параметр, - интеграл автокорреляционной функции в УФ-области, - интеграл автокорреляционной функции в УФ и видимой областях спектра. Технический результат заключается в обеспечении возможности исследования сложных молекулярных, многокомпонентных и метастабильных веществ. 1 табл.

Изобретение относится к определению физико-химических свойств многокомпонентных углеводородных систем. При осуществлении способа определяют цветовые характеристики в колориметрической системе XYZ путем регистрации спектров поглощения образцов в видимой области электромагнитного спектра, затем производят переход из колориметрической системы XYZ в колориметрическую систему RGB, определяют три координаты красного, зеленого и синего цвета колориметрической системы RGB, которые линейно коррелируют с физико-химическими свойствами исследуемых объектов, и определяют физико-химические свойства по формуле: ,где Z – одно из физико-химических свойств: относительная плотность, среднечисловая молекулярная масса, энергия активации вязкого течения и коксуемость по Кондарсону; r, g, b - координаты цветности системы RGB; а1, а2 и а3 - числовые коэффициенты, рассчитанные методом наименьших квадратов и постоянные для данного физико-химического свойства данной углеводородной системы. Достигается повышение точности и надежности, а также ускорение определения. 5 табл., 1 пр.

Изобретение относится к области контроля свойств углеводородов и касается способа определения температуры вспышки в закрытом тигле нефтяных масляных фракций. Способ включает в себя определения цветовой характеристики координаты красного цвета, линейно коррелирующей с температурой вспышки в закрытом тигле. Координата красного цвета RsRGB определяется в колориметрической системе sRGB в растровом графическом редакторе по фотоизображению нефтяной масляной фракции, помещенной в прозрачную кювету и освещенной люминесцентной лампой. Температура определяется по формуле Т=278-0,6678⋅RsRGB, где Т - температура вспышки в закрытом тигле, °С; RsRGB - координата красного цвета в колориметрической системе sRGB, определяемая по фотоизображению нефтяной масляной фракции; 278 - постоянный коэффициент, равный 278°С; 0,6678 - постоянный коэффициент, равный 0,6678°С. Технический результат заключается в упрощении способа измерений. 1 табл.

Изобретение относится к определению цвета по шкале ЦНТ нефтяных масляных фракций и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности. Способ характеризуется тем, что первоначально определяется величина С по процентному содержанию зеленого цвета А в цвете нефтяной масляной фракции, линейно коррелирующему с величиной С, при этом процентное содержание зеленого цвета А рассчитывается по координатам красного, зеленого и синего цвета RRGB, GRGB, BRGB в колориметрической системе RGB, которые определяются в растровом графическом редакторе по фотоизображению нефтяной масляной фракции, которое регистрируется с вольфрамовой лампой мощностью 75 Вт в качестве источника излучения, путем помещения нефтяной масляной фракции в прозрачную кювету: С=10,746-0,2539⋅А, где A=100⋅GRGB/(RRGB+GRGB+BRGB), где А - процентное содержание зеленого цвета в цвете нефтяной масляной фракции, %; RRGB, GRGB, BRGB - координаты соответственно красного, зеленого и синего цвета в колориметрической системе RGB, определяемые по фотоизображению нефтяной масляной фракции, затем рассчитанная величина С переводится в цвет по шкале ЦНТ, измеряемый в единицах ЦНТ, путем округления величины С до числа, кратного 0,5. Достигается объективность, простота и экспрессность определения. 4 пр., 1 табл.

Изобретение относится к способам определения относительной плотности нефтяных масляных фракций и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности. Способ определения относительной плотности нефтяных масляных фракций путем определения ее цветовых характеристик, координат красного, зеленого и синего цвета. При этом координаты цвета RsRGB, GsRGB и BsRGB нефтяной масляной фракции определяются в колориметрической системе sRGB в растровом графическом редакторе по фотоизображению нефтяной масляной фракции, которое регистрируется с дневным светом в качестве источника излучения, путем помещения нефтяной масляной фракции в прозрачную кювету. При этом относительная плотность рассчитывается по формуле: где - относительная плотность нефтяной масляной фракции (при стандартной температуре образца 15°C и температуре воды 4°C), RsRGB, GsRGB, BsRGB - координаты соответственно красного, зеленого и синего цвета в колориметрической системе sRGB, определяемые по фотоизображению нефтяной масляной фракции. Техническим результатом является упрощение и повышение производительности способа определения относительной плотности ρ 4 15 (при температуре образца 15°С и температуре воды 4°С) нефтяных масляных фракций первичной переработки нефти. 1 табл.

Изобретение относится к медицине и может быть использовано для диагностики опухолей головного мозга (ОГМ). Для этого путем электронной феноменологической спектроскопии измеряют оптическую плотность плазмы крови человека в видимой и ультрафиолетовой области спектра. При этом предварительно осуществляют измерение оптической плотности плазмы крови у группы доноров с диагностированной ОГМ и группы доноров, не имеющих такого диагноза. Рассчитывают интегральную силу осцилляторов в видимой (ИСО vis) и ультрафиолетовой (ИСО uv) областях спектра для каждого донора. Проводят построение графика зависимости ИСО vis от ИСО uv для обеих групп доноров и фиксацию результирующих прямых этих зависимостей на обоих графиках. Диагностику осуществляют путем измерения расстояния показателя конкретного больного на графике зависимости ИСО vis от ИСО uv до результирующих прямых доноров с диагнозом ОГМ (d1) и доноров, не имеющих такого диагноза (d2), и при d1<d2 делают вывод о вероятности наличия ОГМ. Изобретение позволяет осуществить первичную диагностику ОГМ у пациентов. 1 з.п. ф-лы, 2 ил., 3 пр.

Изобретение относится к определению физико-химических свойств веществ и материалов: относительной плотности, средней числовой молекулярной массы, коксуемости по Конрадсону, энергии активации вязкого течения многокомпонентных углеводородных систем. Сущность способа заключается в том, что определение физико-химических свойств: относительной плотности, средней числовой молекулярной массы, коксуемости по Конрадсону, энергии активации вязкого течения МУВС - производится путем определения интегрального показателя поглощения многокомпонентной углеводородной системы, линейно коррелирующего с определяемыми физико-химическими свойствами. Интегральный показатель поглощения многокомпонентной углеводородной системы определяется по концентрации раствора образца и его цветовой характеристике в колориметрической системе XYZ, причем первичное определение цветовых характеристик раствора образца производится по фотографическому изображению раствора образца в колориметрической системе sRGB, затем производится переход из колориметрической системы sRGB в колориметрическую систему XYZ, при этом после перехода к колориметрической системе XYZ производится корректировка цветовой характеристики раствора образца в колориметрической системе XYZ на стандартный источник излучения. Определение цветовой характеристики растворов образцов по фотографическим изображениям производится без использования приборов для регистрации электронных спектров поглощения, что позволяет упростить и повысить производительность заявляемого способа. Далее по цветовой характеристике и концентрации раствора определяется интегральный показатель поглощения вещества, который линейно коррелирует с определяемыми ФХС. Достигается упрощение и ускорение определения ФХС МУВС. 3 пр., 6 табл., 3 ил.

Изобретение относится к области электронной техники и может быть использовано в технологии получения терморезистивных материалов для приборов, предназначенных для термостатирования объектов при фиксированных значениях температуры, например терморезисторов, нагревательных элементов и регуляторов температуры. Предложено использование в качестве терморезистивного материала асфальта пропановой деасфальтизации, представляющего собой концентрат асфальтосмолистых веществ и высокомолекулярных ароматических и нафтеноароматических соединений. Технический результат: повышение термостойкости материала, выравнивание температурного коэффициента сопротивления по всему интервалу измеряемых температур, избавление от перколяционного эффекта электропроводности и расширение сырьевой базы терморезистивных материалов. 1 ил., 1 табл.

Изобретение относится к области определения физико-химических свойств

Изобретение относится к области получения битумполимерных материалов, в частности к способу получения битумполимерных материалов из битума и/или нефтяных остатков и полиэтилена

Изобретение относится к области переработки углеводородного сырья путем деасфальтизации

Изобретение относится к способам определения потенциалов ионизации (ПИ) молекул и сродства к электрону (СЭ) органических соединений ароматического характера

Изобретение относится к области получения битумполимерных материалов, в частности к способу получения битумполимерных материалов из битума и/или нефтяных остатков и полиэтилена

 


Наверх