Патенты автора Бойнович Людмила Борисовна (RU)

Изобретение относится к области исследования материалов. Центробежное устройство для измерения сдвиговой прочности адгезии льда к твердым поверхностям содержит серводвигатель, защитный кожух, диск для размещения тестируемых образцов, регистратор температуры, стробоскопический осветитель, две цифровые видеокамеры, видеорегистратор, монитор, блок управления серводвигателем и климатическую камеру. Серводвигатель размещен внутри климатической камеры, внутри которой закреплены стробоскопический осветитель и первая видеокамера. На оси серводвигателя установлен диск для тестируемых образцов. На диске имеются отверстия для крепления тестируемых образцов с намороженными пластинками льда. Первая видеокамера соединена с видеорегистратором, объектив которой направлен на диск для размещения тестируемых образцов. Снаружи климатической камеры размещены видеорегистратор с монитором, блок управления серводвигателем с индикатором частоты вращения. Объектив второй видеокамеры направлен на блок управления серводвигателем с индикатором частоты вращения. Повышается достоверность результатов. 4 з.п. ф-лы, 2 ил., 1 табл.

Изобретение относится к способу придания супергидрофобных свойств поверхности металла. Воздействуют на упомянутую поверхность сфокусированным лучом импульсного лазерного излучения с длительностью импульсов в наносекундном диапазоне, осуществляют перемещение упомянутого луча относительно упомянутой поверхности по заранее заданному закону. Выбирают характеристики упомянутого лазерного излучения и параметры упомянутого относительного перемещения таким образом, чтобы формировать на упомянутой поверхности многомодальную шероховатость с размерами одновременно в нанометровом и микрометровом диапазонах. Модифицируют упомянутую поверхность веществом с низкой поверхностной энергией - гидрофобизатором. Технический результат заключается в высокой эффективности процесса текстурирования поверхности и обеспечении формирования супергидрофобного состояния многомодальной шероховатости с характерными размерами одновременно в нанометровом (нанометры и/или десятки нанометров) и микрометровом (десятки и/или сотни микрон) диапазонах. 1 з.п. ф-лы, 2 ил., 3 пр.

Изобретение относится к способам получения супергидрофобных покрытий с высокими защитными свойствами, обеспечивающими эффективное снижение скорости коррозионных процессов при эксплуатации конструкций и сооружений из сплавов алюминия в атмосфере с высокой влажностью и в агрессивной среде. Способ включает электролитическое оксидирование предварительно очищенной поверхности изделия в электролите, содержащем, г/л: 15-25 C4H4O6K2·0,5Н2О и 1,0-2,0 NaF, в режиме плазменных микроразрядов в гальваностатических условиях при плотности монополярного тока 0,5-1,0 А/см2 с последующей модификацией нанесенного покрытия путем обработки в плазме озона с одновременным ультрафиолетовым облучением в течение 20-70 мин. На модифицированной поверхности формируют супергидрофобное покрытие путем осаждения дисперсии наночастиц диоксида кремния и фторсилоксанового гидрофобного агента в безводном декане. Технический результат - повышение производственной и экологической безопасности способа, снижение затрат времени и электроэнергии при одновременном упрощении аппаратурного оформления. 2 з.п. ф-лы, 3 ил., 3 пр.

Изобретение относится к области получения на стали защитных супергидрофобных покрытий, обладающих водонепроницаемостью и обеспечивающих эффективное снижение скорости коррозионных процессов при эксплуатации стальных конструкций и сооружений в различных эксплуатационных условиях, в том числе в водных коррозионно-активных средах

Изобретение относится к области гальванотехники и может быть использовано для защиты от гальванокоррозии металлоконструкций из разнородных металлов и сплавов, работающих в водных коррозионно-активных средах

Изобретение относится к составам для получения супергидрофобного покрытия на силоксановом резиновом изоляторе

 


Наверх