Патенты автора Кадиев Хусаин Магамедович (RU)

Настоящее изобретение относится к способам химической переработки полимерных отходов в жидкие продукты. Способ заключается в измельчении полимерных отходов, их плавлении, смешении с органическим растворителем в массовом соотношении 1:9-4:1, гидроконверсии с водородсодержащим газом в присутствии суспензии дисперсного катализатора и сепарации продуктов гидроконверсии с получением различных фракций. В качестве полимерных отходов используется смесь полиэтиленов высокого и низкого давления и полипропилена. Органический растворитель представляет собой остатки атмосферной или вакуумной перегонки нефти либо остаток атмосферно-вакуумной дистилляции гидрогенизата, получаемого в сларри-процессе. Растворитель также содержит суспензию наноразмерных частиц MoS2 с размером 50-650 нм. Гидроконверсию проводят при 400-445°С и давлении 3-10 МПа в течение 1-3 ч. Содержание катализатора в реакционной зоне в пересчете на молибден составляет 0,05-0,2% мас. Расход водородсодержащего газа составляет 500 нм3 на 1 т смеси полимерных отходов. Изобретение позволяет улучшить показатели гидроконверсии, такие как время процесса и доля перерабатываемых полимерных материалов, при уменьшении необходимого давления до 3-10 МПа, а также уменьшить необходимое количество катализатора, кроме того, приводит к повышению рентабельности способа, снижению энергозатрат и затрат, связанных с применением спецоборудования. 2 н. и 12 з.п. ф-лы, 1 ил., 3 табл., 9 пр.

Изобретение относится к переработке тяжелого углеводородного сырья с высоким содержанием смол и может быть использовано при переработке высококипящих фракций матричной нефти. Изобретение касается комплексного способа комплексной добычи и переработки матричной нефти, включающего: а) стадию извлечения матричной нефти из пласта с помощью ароматического растворителя тяжелой части матричной нефти при массовом отношении указанного растворителя к матричной нефти от 1:1 до 2:1; б) стадию обезвоживания и обессоливания смеси матричной нефти с ароматическим растворителем с последующей атмосферной перегонкой и выделения дизельной фракции 180-350°С, остатка более 350°С и смеси углеводородного газа, бензиновой фракции и ароматических углеводородов; в) стадию вторичного фракционирования смеси со стадии б) на смесь углеводородных газов с легким бензином - фракцию до 105°С, тяжелый бензин - фракцию 140-180°С и фракцию ароматических углеводородов с температурой кипения 105-140°С; г) стадию гидроконверсии остатка более 350°С со стадии б), характеризующуюся тем, что в указанный остаток вводят водный раствор прекурсора молибденсодержащего катализатора, полученную смесь диспергируют до образования устойчивой обращенной эмульсии, смешивают с водородом, нагревают до температуры реакции 380-460°С и проводят гидрогенизацию в реакторе с восходящим потоком при указанной температуре и давлении 7-10 МПа в присутствии образующегося из прекурсора наноразмерного катализатора, с получением углеводородного газа, который выводят как товарный продукт, бензиновой фракции, дизельной фракции 180-350°С и остатка более 350°С; д) стадию извлечения металлов, согласно которой остаток более 350°С со стадии г) направляют на атмосферно-вакуумную дистилляцию с выделением остатка с температурой кипения более 520°С, из которого выделяют прекурсор молибденсодержащего катализатора и металлы как товарный продукт; е) стадию выделения и концентрирования ароматических углеводородов из бензиновой фракции стадии г) и ароматических углеводородов стадии в) путем фракционирования с получением бензол-толуол-ксилольной фракции с температурой кипения 105-140°С и содержанием толуола не менее 70 мас.% для использования в качестве ароматического растворителя тяжелой части матричной нефти на стадии а) и остаточной тяжелой бензиновой фракции; ж) стадию гидрооблагораживания смеси дизельных фракций со стадий б) и г) совместно с тяжелым бензином стадии в) и остаточной бензиновой фракцией стадии е) и водородсодержащим газом с получением дизельного топлива и серы как товарных продуктов, углеводородного газа и бензинового отгона; з) стадию сжижения смеси углеводородного газа и легкого бензина стадии в) и углеводородного газа стадии ж); и) стадию смешения сжиженного углеводородного газа стадии з) и бензинового отгона стадии ж) и вывода полученной смеси как товарного продукта - компонента газового конденсата. Технический результат - максимальное извлечение ценных товарных продуктов: нефтепродуктов, в том числе углеводородных газов, серы и металлов из тяжелой матричной нефти экологичным, безотходным способом. 3 з.п. ф-лы, 9 табл., 1 ил., 2 пр.

Изобретение относится к способу регенерации молибденсодержащего катализатора из выкипающего выше 500°С остатка гидроконверсии тяжелого углеводородного сырья. Способ включает в себя: выделение методом фильтрации из остатка гидроконверсии, выкипающего выше 500°С, который растворяют при массовом соотношении остаток гидроконверсии:растворитель 1:2-1:4, концентрата отработанного катализатора, содержащего распределенные ультрадисперсные частицы MoS2; окисление концентрата катализатора водным раствором смеси азотной и серной кислот при 25-100°С; нейтрализацию суспензии катализатора до рН>6 водным раствором аммиака с последующим разделением на водный раствор, представляющий собой прекурсор катализатора, и твердый остаток, содержащий соединения ванадия и никеля, в качестве растворителя используют толуол, или фракцию НК-120°С продукта гидроконверсии, или легкий газойль каталитического крекинга. Растворитель, выделенный после сепарации, возвращают для растворения остатка гидроконверсии. Водный раствор смеси кислот содержит от 600 до 800 г/л HNO3 и от 100 до 200 г/л H2SO4. Окисление концентрата катализатора проводят от 30 до 360 минут. Технический результат - повышенная степень извлечения молибдена из концентрата отработанного катализатора, выделенного из непревращенного остатка вакуумной дистилляции продукта гидроконверсии, с исключением выбросов токсичных соединений серы, ванадия и других металлов, в том числе соединений молибдена. 4 з.п. ф-лы, 2 табл., 25 пр., 1 ил.

Предлагаемое изобретение относится к способу получения суспензии молибденсодержащего композитного катализатора гидроконверсии тяжелого нефтяного сырья, который включает введение водного раствора прекурсора катализатора в смесь углеводородов с последующим его сульфидированием. Для получения смеси углеводородов в предварительно нагретый до температуры не менее 200°С вакуумный остаток вводят полиэтилен высокого давления до его содержания 10-25% мас. от вакуумного остатка и перемешивают их в атмосфере водорода при нагреве до 320-360°С. Водный раствор прекурсора катализатора вводят в смесь углеводородов до содержания молибдена 10-30% мас. от полиэтилена путем капельного термолиза при той же температуре в атмосфере водорода при механическом перемешивании со скоростью не менее 500 об/мин. Сульфидирование осуществляют при той же температуре паром диметилсульфида в токе водорода при молярном отношении серы к молибдену в прекурсоре катализатора S/Mo=2.0-10 до образования размеров частиц в суспензии молибденсодержащего композитного катализатора 2-50 нм. Технический результат заключается в уменьшении размера частиц катализатора в суспензии до наноразмерного, повышении стабильности суспензии, снижении расхода катализатора при гидроконверсии и снижении образования кокса. 1 з.п. ф-лы, 2 ил., 2 табл., 14 пр.

Изобретение относится к способам переработки тяжелого углеводородного сырья с чрезвычайно высоким содержанием парафино-нафтеновых углеводородов и низким содержанием нативных смол и асфальтенов и может быть использовано при переработке остатка атмосферной дистилляции газового конденсата АОГК. В способе гидроконверсии высокопарафинистого остатка атмосферной дистилляции газового конденсата перед гидроконверсией сырье смешивают с суспензией ультрадисперсного Mo-содержащего катализатора с размерами частиц 5-300 нм и концентрацией катализатора 1% мас. (в пересчете на молибден), получая гомогенную устойчивую суспензию ультрадисперсного катализатора в сырье, содержащую 0,05-0,2% мас. катализатора (в пересчете на молибден) на массу сырья. Первую суспензию предварительно готовят путем диспергирования каталитически активного соединения молибдена в остатке атмосферной дистилляции гидрогенизата. Проводят гидроконверсию приготовленной смеси путем смешения с водородом и гидрогенизации сырья в реакторе с восходящим потоком сырья при температуре 380-450°С и давлении 7-10 МПа. Сепарируют продукты гидроконверсии с получением водородсодержащего газа, который возвращают на гидрогенизацию в качестве водорода, дистиллятных фракций с температурой кипения до 350°С, которые выводят как товарные продукты, и остатка атмосферной дистилляции гидрогенизата с температурой кипения выше 350°С. Часть последнего (поток I) возвращают в процесс гидроконверсии и используют для подготовки суспензии свежего катализатора, часть (поток II) возвращают на смешение с сырьем, часть (поток III) выводят из процесса гидроконверсии для извлечения и регенерации катализатора. Предпочтительно используют ультрадисперсный Mo-содержащий катализатор, промотированный никелем из условия массового соотношения Mo:Ni =(100-10):1. Количество металлов свежего катализатора, диспергируемого в потоке I, должно быть равным по массе количеству металлов, выводимых с потоком III. Соотношение масс сырья и потоков составляет: сырье: [поток I+поток II+поток III]=1:(0,25-0,8). Соотношение массы сырья и потока III составляет 1:(0,05-0,3). Углеводородную часть остатка выше 350°С потока III после отделения катализатора и других металлов возвращают на рецикл. Массу потока I рассчитывают по формуле (1), где M(I) и М(III) - массы потоков (I) и (III) соответственно (одинаковые единицы); С(350) - содержание катализаторов (в пересчете на металлы) в остатке атмосферной дистилляции гидрогенизата, % мас. Технический результат - повышение глубины конверсии сырья, повышение устойчивости процесса, упрощение способа, снижение капитальных и энергозатрат, экологическая безопасность. 6 з.п. ф-лы, 1 ил., 1 табл., 6 пр.

Изобретение относится к способам переработки тяжелого углеводородного сырья с чрезвычайно высоким содержанием парафино-нафтеновых углеводородов и низким содержанием нативных смол и асфальтенов под давлением водорода в присутствии гетерогенных наноразмерных катализаторов и может быть использовано при переработке атмосферного остатка дистилляции газового конденсата (АОГК). По способу комплексной переработки остатка атмосферной дистилляции газового конденсата полученную ex situ суспензию ультрадисперсного Mo-содержащего катализатора с размерами частиц 5-300 нм и концентрацией катализатора 1% в остатке дистилляции гидрогенизата диспергируют в АОГК с получением гомогенной устойчивой суспензии ультрадисперсного катализатора, содержащей 0,02-0,05% катализатора (на молибден). Перед гидроконверсией смесь подогревают в регенеративном теплообменнике до 250-280°С и в трубчатой печи до 380-450°С, проводят гидроконверсию приготовленной смеси при этой температуре и давлении 7-10 МПа в реакторе с восходящим потоком сырья при подаче холодного водородсодержащего газа в две или три точки на разной высоте реактора. Продукты разделяют в сепараторах высокого и низкого давления с выделением газа и аминовой очисткой газа, который направляют в устройство концентрирования водорода и возвращают на гидроконверсию как водородсодержащий газ, а затем направляют на дистилляцию. Дистиллятные фракции НК-180°С и 180-350°С выводят как товарный продукт. Часть не-превращенного высококипящего остатка с температурой кипения выше 350°С, содержащего катализатор, возвращают в процесс гидроконверсии в качестве рецикла, а часть направляют на выделение металлов и отработанного катализатора, после чего часть указанного деметаллизированного остатка возвращают как остаток дистилляции гидрогенизата для получения суспензии свежего катализатора, а часть выводят как дополнительный товарный продукт - компонент судового топлива. Для осуществления этого способа используют установку, включающую блок подготовки сырья и катализатора, блок гидроконверсии АОГК, блок сепарации продуктов гидроконверсии, блок концентрирования водорода с возможностью получения водородсодержащего газа, соединенный с блоком гидроконверсии, блок выделения катализатора и блоки вывода товарного продукта - дистиллятных фракций и компонента судового топлива. Блок подготовки сырья и катализатора включает последовательно соединенные устройство получения суспензии свежего катализатора и устройство смешения суспензии катализатора с сырьем. Перед блоком гидроконверсии последовательно установлены регенеративный теплообменник и трубчатая печь. Блок гидроконверсии является реактором с восходящим потоком сырья, включающим две или три точки подачи холодного водородсодержащего газа на разной высоте реактора. Блок сепарации продуктов гидроконверсии включает сепараторы высокого и низкого давления и соединенное с ними и с блоком концентрирования водорода устройство аминовой очистки газа, и колонну атмосферной дистилляции, соединеную с устройством очистки газа, блоком вывода дистиллятных фракций, устройством смешения суспензии катализатора с сырьем и блоком выделения катализатора, который соединен с устройством получения суспензии свежего катализатора и устройством вывода второго товарного продукта - компонента судового топлива. Технический результат - повышение глубины конверсии АОГК, повышение устойчивости процесса, упрощение установки и способа, снижение капитальных и эксплуатационных затрат, исключение образования и отложения кокса. 2 н.п. ф-лы, 1 ил., 4 пр.

Изобретение относится к области переработки нефтяных отходов, а именно нефтяных шламов, в нефтепродукты, и может быть использовано для утилизации нефтяных шламов и получения дистиллятных фракций с температурой не выше 520°С. Для подготовки нефтяного шлама осуществляют его контакт с растворителем в экстракторе, экстракцию при постоянном перемешивании и продувке инертным газом, выделение из экстракта воды, части растворителя и фракции легких углеводородов, кипящих до 350°С. Остальную часть экстракта отстаиванием и декантацией разделяют на жидкую органическую фазу и осадок. Последний направляют на повторную экстракцию. Осуществляют горячее фильтрование второго экстракта при избыточном давлении 0,4-0,6 МПа и температуре 45-50°С и смешивают фильтрат с жидкой органической фазой со стадии декантации. Растворитель отделяют от осадка фильтрования - выпариванием, а от фильтрата или его смеси с жидкой органической фазой ректификацией. Остаток ректификации нагревают 70-90°С, с получением подготовленного нефтяного шлама. Далее его смешивают с древесными опилками, которые предварительно пропитывают водным раствором прекурсора катализатора - парамолибдата аммония, так что содержание прекурсора катализатора в сырье составляет 0.05% мас. в расчете на Мо, диспергируют смесь в роторно-кавитационном диспергаторе и проводят гидрогенизацию сырья в реакторе при повышенной температуре и давлении в присутствии водорода и катализатора, образующегося in situ из прекурсора катализатора. Технический результат - повышение степени утилизации нефтяного шлама, в том числе его наиболее тяжелых углеводородных фракций, исключение коррозии оборудования и отравления катализатора минеральными примесями, содержащимися в нефтяном шламе, и повышение выхода дистиллятных фракций, уменьшение выхода кокса при гидроконверсии нефтяного шлама. 6 табл., 7 пр.

Изобретение относится к области нефтепереработки и, более конкретно, к способам приготовления наноразмерных и ультрадисперсных катализаторов без носителя для гидрогенизационной переработки высокомолекулярного углеводородного сырья, в частности высококипящих остатков переработки нефти, природных битумов, битуминозных нефтей, углеродсодержащих отходов и др., и может быть использовано в нефтеперерабатывающей промышленности с получением углеводородного газа, бензиновых и дизельных фракций, вакуумного газойля. Способ получения суспензии катализатора гидроконверсии тяжелого нефтяного сырья включает стадии получения гомогенной смеси водного раствора водорастворимого прекурсора катализатора и сульфидирующего агента в углеводородной среде, диспергирования смеси с получением обращенной эмульсии и термообработки обращенной эмульсии в течение 2-8 ч при температуре 280-370°С с получением суспензии, содержащей стабилизированные в углеводородной среде частицы катализатора размером не более 350 нм. Углеводородная среда содержит асфальтены при отношении их содержания к парафинонафтеновым углеводородам более 0,16 и к ароматическим углеводородам более 0,08. В качестве сульфидирующего агента используют элементную серу при атомном отношении S/Me=1.5-2. Получение указанной гомогенной смеси осуществляют путем предварительного растворения серы в углеводородной среде при температуре 130°С, последующего добавления в эту среду водного раствора прекурсора катализатора и гомогенизации при температуре 60-90°С. В качестве водорастворимого прекурсора катализатора используют водорастворимые соли никеля, молибдена или кобальта, в том числе парамолибдат аммония. Технический результат - уменьшение размера частиц катализатора в суспензии с микроразмерного до ультрадисперсного, повышение стабильности суспензии, повышение степени сульфидирования катализатора, удешевление из-за отсутствия дорогостоящих ПАВ, повышение активности в процессе гидроконверсии, а именно повышение степени конверсии фракции более 520°С и снижение образования кокса. 1 з.п. ф-лы, 1 ил., 1 табл., 14 пр.

Изобретение относится к способу получения из горючих сланцев топливно-энергетических и химических продуктов, в частности моторных топлив. Измельченный горючий сланец (ГС) смешивают с измельченным твердым органическим компонентом, температура максимальной скорости разложения вещества которого отличается от температуры максимальной скорости разложения органического вещества ГС не более чем на 5°С. Проводят их пиролиз при 450-500°С. Выделенную из парогазовой смеси смолу пиролиза дистиллируют с получением бензиновой, дизельной фракций и остатка дистилляции с температурой кипения выше 350°С. Этот остаток смешивают с жидким продуктом нефтяного происхождения с температурой кипения выше 350°С, содержащим стабилизатор эмульсии - асфальтены и 2-6,5% органических соединений серы в расчете на элементарную серу. В полученной смеси эмульгируют водный раствор прекурсора катализатора, из которого после смешения эмульсии с водородом и нагревания в условиях гидроконверсии образуется дисперсный сульфидный катализатор гидроконверсии. После гидроконверсии проводят дистилляцию жидкого продукта гидроконверсии. Бензиновую фракцию гидроконверсии объединяют с бензиновой фракцией, полученной при дистилляции смолы пиролиза, а дизельную фракцию, полученную при гидроконверсии, - с дизельной фракцией, полученной при дистилляции смолы пиролиза. Технический результат - удешевление технологического процесса, повышение выхода дистиллятных фракций, выкипающих до 350°С, снижение в дистиллятных бензиновых фракциях содержаний гетероатомных соединений. 9 з.п. ф-лы, 2 ил., 5 табл., 15 пр.

Изобретение относится к способу переработки тяжелых нефтяных остатков, таких как остатки атмосферно-вакуумной перегонки нефти и остаточные высококипящие фракции термо- и термогидродеструктивных процессов, для получения ценных металлов, в том числе редких и редкоземельных металлов, а также выработкой тепла и/или электроэнергии. Способ включает экстракцию тяжелого нефтяного сырья растворителем - сверхкритическим диоксидом углерода с добавлением от 10 до 30% мас. от массы растворителя жидкого органического модификатора, выбираемого из ряда метанол, этанол, ацетон, ацетонитрил, этилацетат, н-гептан, толуол, о-ксилол, при температуре от 40 до 70°C и давлении от 150 до 400 бар, выбираемых таким образом, чтобы плотность диоксида углерода была не ниже 0,8 г/мл, с получением смолисто-асфальтенового остатка, отгонку растворителя, сжигание смолисто-асфальтенового остатка при температуре от 900 до 1300°C с коэффициентом избытка воздуха от 1,1 до 1,3 и выведение золошлаковый остатка как концентрата ценных металлов. Изобретение обеспечивает одновременное извлечение масляных компонентов с минимальным содержанием металлов и концентрата с максимальным содержанием ценных металлов, в том числе редких и редкоземельных. 3 з.п. ф-лы, 1 ил., 2 табл., 4 пр.

Изобретение относится к способу выделения ценных металлов, содержащихся в тяжелых нефтях и продуктах их переработки. Способ включает в себя обработку тяжелого нефтяного сырья низкотемпературной плазмой, образуемой сверхвысокочастотным (СВЧ) электромагнитным излучением. Способ осуществляется следующим образом. В обогреваемый реактор, снабженный электродом со сквозным отверстием для подачи инертного газа - аргона, загружают тяжелое нефтяное сырье. Через электрод подают инертный газ, после чего включают питание и генерируют плазму. На кончике электрода инициируется пробой с дальнейшим образованием газовых пузырей, температура внутри которых достигает 1500 K. Обработку нефтяного сырья проводят в течение 2 минут. В качестве обрабатываемого образца используется тяжелое нефтяное сырье с плотностью от 900 до 1100 кг/м3. В качестве материала для электрода используется медный стержень. Способ позволяет получить концентрат ценных металлов, таких как Ni, V, Mo, Co, Cu, Zn и других, содержащихся в нефтяном сырье. Технический результат - получение из тяжелого нефтяного сырья твердого продукта - концентрата ценных металлов - и жидких углеводородов с пониженным содержанием металлов. 1 з.п. ф-лы, 3 табл., 3 пр., 1 ил.

Настоящее изобретение относится к способам переработки углеводородных масел в атмосфере водорода в присутствии дисперсных катализаторов и может быть использовано при переработке тяжелого углеводородного сырья (ТУС) в жидкие углеводородные продукты с более низкой температурой кипения, чем исходное сырье. Для гидроконверсии ТУС с получением жидких углеводородных смесей готовят водный раствор прекурсора катализатора на основе соединения молибдена, эмульгируют его в ТУС, смешивают подготовленное сырье, содержащее эмульгированный прекурсор катализатора, с водородсодержащим газом, нагревают полученную смесь до сульфидирования прекурсора катализатора, проводят гидроконверсию в восходящем потоке сырья и разделяют полученные продуктов в системе сепараторов. Предварительно определяют содержание в сырье остатка вакуумной дистилляции с температурой начала кипения в интервале 500-540°С - С0, содержание С, Н, N, S, О в сырье и С1, H1, N1, S1, O1 в асфальтенах, % мас. Исходя из полученных значений, рассчитывают объемную скорость сырья V, с-1, и температуру Т, К, по следующим формулам: , Fmax=-2,2961ϕ+91,565, где Fmax - предельное критическое значение глубины конверсии, при превышении которого гидроконверсия сопровождается образованием кокса, % мас., А - предэкспоненциальный множитель в уравнении Аррениуса, τ - время контакта, с, рассчитываемое по формуле: τ=1/V, Еа - энергия активации, Дж/моль, ϕ - характеристика сырья, рассчитываемая по формуле: ϕ=(δасф - δсреды)CR, δасф и δсреды - параметры растворимости Гильдебранда асфальтенов и среды соответственно, МПа0,5, рассчитываемые по уравнениям: δсреды=-0,0004 βсреды2 + 0,022 βсреды + 20,34, δасф=-0,0004 βасф2 + 0,022 βасф + 20,34, βсреды = 50(Н-0,125О- 0,2143N-0,0625S)/(0,0833C-1), βасф = 50(H1- 0,125O1- 0,2143N1-0,0625S1)/(0,0833C1-1). Для определения энергии активации Еа проводят два опыта гидроконверсии при двух различных значениях температуры Т1 и Т2, К, определяют содержание остатка вакуумной дистилляции с температурой начала кипения в интервале 500-540°С в продуктах гидроконверсии при температуре Т1 и Т2 - CT1 и СТ2 соответственно, % мас., рассчитывают константы скорости k1 и k2: k1=(lnC0 - lnCT1)/τ, k2=(lnC0 - lnCT2)/τ, и рассчитывают энергию активации по формуле: Еа=R (lnk2 - lnk1)/(1/T1 - 1/Т2), где R - универсальная газовая постоянная. Затем проводят гидроконверсию сырья при выбранных значениях V и Т, соответствующих Fmax. В варианте осуществления изобретения содержание С1, H1, N1, S1, O1 в асфальтенах не определяют, βасф не рассчитывают, а δасф принимают равным 20,3, рассчитывая ϕ по формуле: ϕ=(20,3 - δсреды)CR. Коксовое число CR могут определять расчетом по формулам: CR = 0,7998 α3 - 8,1347 α2 + 35,698 α - 43,251, α = С/6 - Н+N/14. Технический результат - достижение максимальной степени конверсии при минимальном коксообразовании простым способом с проведением малого числа опытов. 2 н. и 2 з.п. ф-лы, 9 табл., 4 пр., 5 ил.

Изобретение относится к способу гидроконверсии тяжелой части матричной нефти с получением жидких углеводородных смесей в присутствии распределенного в сырье молибденсодержащего катализатора при повышенной температуре и давлении водорода. Способ характеризуется тем, что в сырье - тяжелую часть матричной нефти с температурой кипения выше 350°C - вводят водный раствор прекурсора молибденсодержащего катализатора, полученную смесь диспергируют до образования устойчивой обращенной эмульсии, смешивают с водородом, нагревают до температуры реакции 380-460°C и проводят гидрогенизацию в реакторе с восходящим потоком при указанной температуре и давлении 7-10 МПа в присутствии образующегося из прекурсора катализатора, затем из продуктов реакции выделяют дистиллятные фракции с температурой кипения до 250°C и остаток с температурой выше 250°C и указанный остаток в количестве 20-80% в расчете на содержание фракций выше 520°C в исходной тяжелой части матричной нефти возвращают на стадию подготовки сырья как рисайкл, остальную часть указанного остатка направляют на атмосферно-вакуумную дистилляцию с выделением остатка с температурой кипения выше 520°C, направляемого на стадию извлечения металлов, рисайкл при температуре 60-95°C смешивают с указанной тяжелой частью матричной нефти, вводят в нее водный раствор указанного прекурсора и повторяют последующие стадии. Использование предлагаемого способа позволяет исключить введение сторонних модификаторов, повысить глубину конверсии сырья и снизить выход кокса. 5 з.п. ф-лы, 11 пр., 1 табл.

Группа изобретений относится к области переработки нефтяных отходов, а именно нефтяных шламов, в нефтепродукты, и может быть использовано для утилизации нефтяных шламов и получения дистиллятных фракций с температурой не выше 520°C. По первому варианту реализации способа нефтяной шлам, содержащий более 5% мас. минеральных примесей, для гидрогенизационной переработки приводят в контакт с растворителем в экстракторе. Осуществляют предварительную продувку экстрактора инертным газом до удаления воздуха и экстракцию при постоянном перемешивании и продувке инертным газом. Выделяют из экстракта воду, часть растворителя и фракцию легких углеводородов, кипящих до 350°C. Остальную часть экстракта отстаиванием и декантацией разделяют на жидкую органическую фазу и осадок. Последний направляют на повторную экстракцию. Осуществляют горячее фильтрование второго экстракта при избыточном давлении 0,4-0,6 МПа и температуре 45-50°C и смешивают фильтрат с жидкой органической фазой, получая подготовленное сырье. Если нефтяной шлам содержит не более 5% мас. минеральных примесей, то при его подготовке отстаивание и декантацию не осуществляют, сразу направляя часть экстракта, не содержащую легких углеводородов, на горячее фильтрование. Растворитель отделяют от фильтрата или его смеси с жидкой органической фазой ректификацией, а от осадка фильтрования - выпариванием, и возвращают его в цикл. Подготовленное для гидрогенизационной переработки по первому или второму способу сырье направляют в реактор и осуществляют гидрогенизационную переработку указанного сырья в присутствии водорода и катализатора MoS2, синтезированного in situ из водного раствора парамолибдата аммония, диспергированного в подготовленном сырье. Обеспечивается повышение степени утилизации нефтяного шлама, в том числе его наиболее тяжелых углеводородных фракций, с исключением коррозии оборудования и отравления катализатора минеральными примесями, содержащимися в нефтяном шламе, и повышением выхода дистиллятных фракций при гидрогенизационной переработке нефтяного шлама. 4 н.п. ф-лы, 7 табл., 10 пр.

Изобретение относится к способам гидроконверсии тяжелого углеводородного сырья (ТУС) в присутствии дисперсных, ультрадисперсных или наноразмерных катализаторов. Указанный способ может быть использован при гидроконверсии тяжелых битуминозных нефтей, природных битумов, высококипящих остатков переработки нефти и предназначен для получения жидких углеводородных продуктов с более низкой температурой кипения, чем исходное сырье. Способ гидроконверсии тяжелого углеводородного сырья включает приготовление водного раствора прекурсора катализатора - полимолибденовой кислоты Hn[H2+2kMo1+mO4+3m+k], где m>7, k>2, n=1-5, имеющего значение pH от 0,5 до 3 (предпочтительно 1-2,5), эмульгирование этого раствора в сырье или его части, смешение подготовленного сырья, содержащего эмульгированный прекурсор катализатора, с водородсодержащим газом, нагрев полученной газожидкостной смеси до сульфидирования прекурсора катализатора, гидроконверсию в восходящем потоке сырья при давлении 5-9 МПа в присутствии образующегося из прекурсора катализатора с размерами частиц менее 100 нм, разделение полученных продуктов в системе сепараторов и рециркуляцию водородсодержащего газа на стадию смешения. В одном варианте перед эмульгированием в сырье вводят экстрагент прекурсора катализатора, выбранный из первичных, вторичных и третичных аминов с числом атомов углерода в алкильных заместителях не менее 8, органических соединений, включающих пиридиновые, хинолиновые или пиррольные группы, и промышленных азотсодержащих экстрагентов. Мольное отношение введенного экстрагента и прекурсора (в пересчете на моль MoO3) - от 2:1 до 20:1, соотношение объемов органической и водной фаз при эмульгировании - от 20:1 до 200:1, предпочтительно от 25:1 до 100:1. В другом варианте углеводородное сырье содержит азотистые основания, являющиеся экстрагентом по отношению к прекурсору катализатора при атомном отношении содержания основного азота в сырье Νоснов к содержанию молибдена, входящего в состав прекурсора, от 20:1 до 100:1 (предпочтительно 40:1-80:1) и содержании Nоснов в углеводородном сырье не менее 0.3%. Вязкость сырья, содержащего экстрагент, при температуре эмульгирования 50-90°С - от 0,5 до 2,5 Па⋅сек. Перед смешением водородсодержащий газ подогревают до 420-450°С. Гидроконверсию осуществляют при 420-450°С, соотношении водород:сырье = (500-1500):1 нл/л, длительности пребывания сырья в реакционной зоне 0,33-2 ч. Предпочтительно часть непревращенного остатка гидроконверсии рециркулируют на стадию смешения, а другую часть используют для регенерации прекурсора катализатора, который рециркулируют на стадию эмульгирования. Технический результат - повышение активности катализатора, конверсии, выхода дистиллятных продуктов, снижение коксообразования. 2 н. и 15 з.п. ф-лы, 2 ил., 3 табл., 7 пр.

Изобретение относится к способу регенерации молибденсодержащего катализатора из остатков гидроконверсии тяжелого нефтяного сырья. Способ включает термообработку непревращенного остатка гидроконверсии, выкипающего при температуре выше 520°С и содержащего распределенный ультрадисперсный катализатор, с получением зольного остатка, который подвергают промывке с извлечением молибденсодержащего прекурсора катализатора, который возвращают в цикл. При этом термообработку непревращенного остатка гидроконверсии осуществляют путем его газификации в смеси с циркулирующим инертным носителем, на котором сорбируются металлы, содержащиеся в исходном сырье и катализаторе, а промывке подвергают зольный остаток и инертный носитель, обогащенные триоксидом молибдена из отработанного катализатора. Предлагаемый способ позволяет повысить степень извлечения молибдена из остатка гидроконверсии, исключить выбросы молибденсодержащих соединений в окружающую среду и значительно снизить количество дымовых газов. 10 з.п. ф-лы, 2 ил., 9 пр.

Настоящее изобретение относится к области нефтепереработки тяжелых нефтяных фракций. Изобретение касается способа гидроконверсии тяжелых фракций нефти - исходного сырья, состоит из нулевой стадии и последующих N стадий. Нулевая стадия включает подачу в реактор сырья, прекурсора катализатора - водного раствора соли Мо (VI) или солей Мо и Ni, и водорода при давлении 4-9 МПа при нормальных условиях, реакции сырья и водорода при 420-450°С в присутствии образующегося в реакторе из прекурсора суспендированного наноразмерного молибденового или молибдено-никелевого катализатора, атмосферную или атмосферно-вакуумную перегонку гидрогенизата, вывод низкокипящей фракции с температурой кипения не выше 500°C как продукта и возвращение высококипящей фракции ВКФ или ее части в реактор. Последующие стадии включают подачу в реактор сырья, прекурсора катализатора, возвращенной части ВКФ и водорода, их реакцию, атмосферную указанную перегонку гидрогенизата, вывод низкокипящей фракции как продукта, возвращение части ВКФ в реактор, сжигание при 1000-1300°C или газификацию остальной части ВКФ, после чего уловленные золошлаковые остатки ЗШО подвергают дополнительному окислительному обжигу при 800-900°C и полученный зольный продукт, не содержащий углерода, используют для регенерации прекурсора катализатора и производства промышленного концентрата ванадия и никеля. Количество стадий N определяют по формулам: b d ⋅ ( n n + n m + 1 ) = a + ∑ i = 1 n m b i + b e ⋅ n m , N=nn+nm+1, где nn - число стадий с рециркуляцией, после которых достигается равновесный выход НКФ; nm - число стадий с рециркуляцией после достижения равновесного выхода НКФ, обеспечивающее достижение заданного выхода низкокипящих фракций из исходного сырья; bd - заданный выход низкокипящих фракций, % мас.; а - выход низкокипящих фракций на нулевой стадии, % мас.; bi - выход низкокипящих фракций на i-й стадии до достижения равновесия, % мас., be - выход низкокипящих фракций после достижения равновесия, % мас., be>bd. Технический результат - увеличение выхода низкокипящих фракций, сокращение расхода молибдена, повышение степени извлечения молибдена, ванадия и никеля из раствора, возможность рассчитать необходимый объем реактора, получить промышленный концентрат ванадия и никеля, снизить расход водорода. 2 з.п. ф-лы, 1 ил., 2 табл., 2 пр.

Изобретение относится к получению жидких углеводородных смесей из растительной лигноцеллюлозной биомассы, предназначенных для дальнейшей переработки в моторные топлива и химические продукты. Способ получения жидких углеводородных смесей осуществляют путем гидроконверсии лигноцеллюлозной биомассы в среде растворителя в присутствии прекурсора дисперсного катализатора, способ включает сушку биомассы, ее измельчение, приготовление пасты из измельченной биомассы, растворителя и прекурсора дисперсного катализатора, гидроконверсию приготовленной пасты, разделение полученных продуктов в системе сепараторов, способ отличается тем, что в качестве растворителя используют органический растворитель, имеющий в интервале температур 60-90°C вязкость от 0,5 до 2,5 Па·с, содержащий 2-5,5% маc. серы и 5-25% мас. полициклических ароматических углеводородов и/или их производных, а измельчение биомассы и приготовление указанной пасты осуществляют путем диспергирования с механоактивацией биомассы в среде растворителя, содержащего прекурсор катализатора, при этом предварительно осуществляют нагрев приготовленной пасты в инертной атмосфере до температуры 330-380°C при давлении 0,2-0,5 МПа до удаления основного количества кислорода биомассы в форме СО, CO2 и H2O с последующей гидроконверсией. Технический результат - увеличение выхода жидких продуктов гидроконверсии биомассы, повышение глубины конверсии биомассы, упрощение технологического процесса. 9 з.п. ф-лы, 10 табл., 2 ил., 7 пр.

Изобретение относится к способу скоростной деструкции остаточных нефтяных продуктов. Способ включает адсорбцию остаточных нефтяных продуктов в порах углеродного сорбента и обработку сверхвысокочастотным излучением при индуцированной температуре до 600°C в потоке аргона или диоксида углерода. При этом в качестве остаточных нефтяных продуктов используют пек или деасфальтизат, взятые в равных количествах с углеродным сорбентом, а обработку сверхвысокочастотным излучением проводят в течение 10-20 минут. Как правило, в качестве углеродного сорбента используют дробленый древесный уголь с тангенсом угла диэлектрических потерь, равном 8,8. Предлагаемое изобретение позволяет простым способом получить водород, дополнительное количество ценных жидких углеводородов и концентрата редких металлов. 1 з.п. ф-лы, 3 ил., 4 табл., 6 пр.

Изобретение относится к области нефтяной, нефтехимической, газовой, химической промышленности и к области охраны окружающей среды, и более конкретно, к способам утилизации нефтяных остатков и загрязнений, удаленных с водной или твердой поверхностей, а также из сточных вод, и может быть использовано для осуществления природоохранных мероприятий с получением ценных энергоносителей

Изобретение относится к области нефтехимии и, более конкретно, к способам для термокаталитической деструктивной переработки высокомолекулярного углеводородного сырья, в частности высококипящих остатков переработки нефти
Изобретение относится к области нефтехимии, и более конкретно к способам гидрогенизационной переработки высокомолекулярного углеводородного сырья

 


Наверх