Патенты автора Сахаров Алексей Александрович (RU)

Способ восстановления формы асферической поверхности оптической детали по параметрам отраженного волнового фронта содержит получение радиуса ближайшей сферы Rз и волнового фронта сферической формы Ws(ρ). В положении начальной установки для измеряемой асферической оптической детали, характеризующейся получением автоколлимационного хода лучей, контролируемого по получению плоского волнового фронта на датчике волнового фронта (ДВФ), фиксируют отличия волнового фронта от ближайшей сферы Was(ρ) для вычисления коэффициентов уравнения асферической поверхности заданного порядка путем минимизации разницы этого уравнения и суммы сферического волнового фронта Ws(ρ) и половины величины Was(ρ), т.е. где А4, А6, A8, … - коэффициенты соответствующего порядка асферики, k - коническая константа, ρ - радиальная координата на зрачке, R - радиус вершинной сферы. Технический результат - возможность восстановления формы асферической поверхности оптической детали по параметрам отраженного волнового фронта.

Изобретение относится к оптическим измерительным системам. Устройство измерения радиуса кривизны вогнутой оптической сферической поверхности c разнесенными ветвями содержит точечный источник, оптическую систему измерительной части, включающую светоделительный элемент, датчик волнового фронта. В устройство введен дополнительный светоделительный элемент, с помощью которого точечный источник выносится за пределы оптической системы измерительной части, располагается перед измерительной частью устройства и совмещается с фокусом насадки устройства. Дополнительный светоделительный элемент находится между фокусом насадки и измеряемой оптической деталью и перемещается относительно центра кривизны измеряемой детали вместе с измерительной частью устройства. Технический результат заключается в обеспечении возможности снижения погрешности измерения радиусов кривизн вогнутых оптических деталей. 1 ил., 1 табл.

Изобретение предназначено для определения радиуса кривизны вогнутой оптической сферической поверхности с центральным осевым отверстием при контроле и настройке оптических элементов. Способ измерения радиуса кривизны оптических деталей больших размеров с центральным осевым отверстием содержит установку начального положения центра кривизны измеряемого зеркала любым прибором, позволяющим получить автоколлимационный ход лучей, проходящих через центр кривизны измеряемого зеркала. При этом в начальном положении направляют подвижным зеркалом световой пучок лазерного дальномера на поверхность измеряемого зеркала в пределах его апертурного угла под углом к оптической оси и через ее центр кривизны для получения расстояния D1 от дальномера до измеряемой поверхности через подвижное зеркало. После чего сдвигают подвижное зеркало и повторяют установку начального положения для зеркала известного радиуса Rэт, далее подвижное зеркало возвращают в прежнее положение, при котором световой пучок лазерного дальномера попадает на зеркало известного радиуса Rэт под тем же углом, что и для измеряемой поверхности, и проходит через центр кривизны зеркала известного радиуса Rэт, после чего, не изменяя положения дальномера, измеряют расстояние D2 от дальномера до измеряемой поверхности известного радиуса Rэт через подвижное зеркало, определяя искомый радиус контролируемой вогнутой оптической сферической поверхности Rз как разницу между этими двумя дальностями, плюс величина Rэт, т.е.Rз=D1-D2+Rэт.Технический результат – обеспечение возможности измерения вогнутых оптических сферических поверхностей с центральным осевым отверстием. 1 ил.

Способ содержит установку начального положения для эталонного зеркала 1.2 c известным радиусом кривизны Rэт , соответствующего совпадению его центра кривизны с точкой фокуса оптической насадки 2 на оптической оси единого блока, включающего оптическую насадку 2, оптическую систему 3 и датчик волнового фронта 4. На оптическую насадку 2 приходит отраженный от эталонного зеркала 1.2 сферический волновой фронт с радиусом кривизны, равным фокусному расстоянию ƒн оптической насадки 2. После оптической насадки и оптической системы на датчик волнового фронта 4 приходит плоский волновой фронт. Посредством малого перемещения Δэт единого блока вдоль оптической оси производят определение радиуса кривизны волнового фронта Rдвф, приходящего на датчик волнового фронта 4, после чего проводят начальную установку для контролируемой детали 1.1 с радиусом RЗ, повторяют для нее вышеописанные операции, определяют величину перемещения единого блока ΔЗ, при котором на датчик волнового фронта 4 приходит сферический волновой фронт с радиусом кривизны Rдвф, и вычисляют радиус кривизны контролируемой детали R3. Технический результат - повышение точности определения радиуса кривизны контролируемой поверхности. 2 н. и 1 з.п. ф-лы, 1 ил., 1 табл.

Заявленное изобретение относится к разработкам в области измерительных оптических систем и может применяться в системах контроля качества и других областях оптической промышленности. Заявленное устройство определения радиуса кривизны крупногабаритной оптической детали на основе датчика волнового фронта содержит: оптическую насадку 2; оптическую систему 3, состоящую из афокальной системы оптических элементов 3.1, 3.2, светоделительного кубика 3.3 между ними и точечного источника излучения 3.4. Оптический элемент 3.1 является коллимирующим объективом для источника 3.4 с выводом коллимированного излучения в насадку 2 и одновременно с этим элементы 3.1, 3.2 согласуют апертуры насадки 2 и датчика 4, расположенного позади элемента 3.2; место неподвижного расположения детали 1 с ее контролируемой поверхностью, обращенной к насадке 2. Деталь 1, насадка 2 и система 3 расположены последовательно на единой оптической оси. Насадка 2, система 3 и датчик 4 образуют единый блок с возможностью его малых по сравнению с величиной радиуса кривизны поверхности детали 1 варьируемых перемещений вдоль оптической оси относительно места неподвижного расположения детали 1. Оптическая ось датчика 4 совпадает с единой оптической осью детали 1, насадки 2 и системы 3. При этом отсутствует излом кубиком 3.3 сферических волновых фронтов, отраженных от поверхности детали 1 обратно в насадку 2 и через элементы 3.1, 3.2 к датчику 4, а кубик 3.3 использован только для ввода излучения от источника 3.4 в элемент 3.1. Способ с использованием указанного устройства заключается в том, что в начальном положении на насадку 2 единого блока приходит отраженный от детали 1 сферический волновой фронт с радиусом кривизны, равным фокусному расстоянию ƒн насадки 2, при этом после насадки 2 и системы 3 этот волновой фронт приходит на датчик 4 уже в виде плоского волнового фронта с радиусом кривизны, равным бесконечности. После этого посредством дополнительного малого по сравнению с величиной радиуса Rз кривизны поверхности детали 1 перемещения Δ единого блока насадки 2, системы 3 и датчика 4 вдоль оптической оси производят определение радиуса Rз через определение радиуса кривизны приходящего на датчик 4 отраженного от поверхности детали 1 сферического волнового фронта с учетом его геометрического преобразования системой 3 с помощью расчета по формуле отрезков для насадки 2 и элементов 3.1, 3.2 и с использованием формул расчета радиуса Rз с учетом правила знаков (из геометрической оптики). Перемещение Δ выбирают так, чтобы на датчик 4 приходил сферический волновой фронт, соответствующий допустимому минимально измеряемому датчиком 4 радиусу кривизны сферического волнового фронта, при этом радиус кривизны сферического волнового фронта Rn на входе насадки 2 связан с радиусом Rз, перемещением Δ и фокусным расстоянием ƒн формулой: , из которой при известной величине радиуса Rn определяют искомую величину радиуса Rз кривизны контролируемой поверхности детали 1. Технический результат - уменьшение искажений (аберраций) отраженного от контролируемой поверхности детали сферического волнового фронта и соответственно увеличение динамического диапазона работы устройства; а также минимизация среднеквадратической погрешности измерения радиуса кривизны волнового фронта и соответственно повышение точности определения радиуса кривизны контролируемой поверхности детали. 2 н. и 2 з.п. ф-лы, 1 ил., 1 табл.

Предложен датчик дыма. Он содержит источник излучения с блоком питания и отражатель, оптически сопряженный с источником излучения, опорный приемный канал, оптически сопряженный с источником излучения, выход которого соединен с входом блока питания, измерительный приемный канал, оптически сопряженный с источником излучения через отражатель. При этом наличие задымления определяется в измерительном канале по превышению пороговой величины Δ, разницей между значением текущего уровня сигнала Фт измерительного канала и значением динамического уровня сигнала Ф0, где *Ф0 - начальный уровень сигнала; Фi - мгновенное значение сигнала; i - номер выборки; n - число выборок для усреднения динамического уровня сигнала; k - число выборок для усреднения текущего уровня сигнала. 1 ил.

Изобретение относится к области оптического приборостроения, в частности к лазерным системам, способным формировать изображение удаленных объектов как ночью, так и днем

 


Наверх