Патенты автора Лисовин Игорь Георгиевич (RU)

Изобретение относится к авиадвигателестроению, в частности к регулирующим устройствам в системах управления радиальными зазорами газотурбинных двигателей. Электроприводная заслонка содержит корпус с заслонкой, выполненной поворотной с приводом от электромеханизма, и упором для фиксации положения поворотной заслонки в закрытом положении, возвратный механизм, электромеханизм с электродвигателем, планетарным редуктором, блоком управления и контроля. Электродвигатель электромеханизма выполнен с ротором с инкорпорированными постоянными магнитами и изготовлен из двухфазного магнитного материала, причем немагнитные зоны распределены по окружности ротора в области между инкорпорированными постоянными магнитами и полюсными наконечниками, а в электромеханизме установлены как минимум два датчика положения заслонки. Технический результат: снижение массы, повышение технологичности изготовления устройства, надежности и коэффициента использования материала, а также повышение точности позиционирования заслонки. 2 ил.

Изобретение относится к средствам технической диагностики. Техническим результатом является повышение достоверности проводимых исследований за счет независимого контроля условий проводимых исследований. Предложенный способ опережающего исследования электронных систем управления сложными техническими объектами заключается в поэтапном исследовании электронных систем управления сложными техническими объектами, где исследования электронной системы управления непосредственно со сложным техническим объектом выполняются только после корректно проведенного полного объема предстоящих исследований с использованием стенда, содержащего исследуемую электронную систему управления сложным техническим объектом, модуль имитации отказных ситуаций, модули обработки входных и выходных сигналов, модуль математической модели сложного технического объекта, представляющий собой реконфигурируемую программную реализацию физических процессов сложного технического объекта, и модуль верификации сигналов, представляющий собой автономную реконфигурируемую программно-аппаратную реализацию сравнения входных и выходных электрических сигналов, а при наличии и выходных цифровых сигналов исследуемой электронной системы управления сложным техническим объектом с входными и выходными цифровыми сигналами математической модели сложного технического объекта и формирования заключения о достоверности проводимого исследования в режиме реального времени, и модуль оператора, представляющий из себя реконфигурируемую супервизорную систему, обеспечивающую формирование и запуск программных тестов с сохранением и визуализацией данных о реакции системы управления сложного технического объекта на тестовые воздействия и сигналы о достоверности проводимого исследования. 2 н. и 1 з.п. ф-лы, 1 ил.

Изобретение относится к области защиты турбомашинных агрегатов, включающих газотурбинные установки (газовые турбины и приводимые ими машины, например, генераторы), от опасных забросов частоты вращения при внезапном полном или частичном сбросе нагрузки. В способе возобновления подачи топлива при предотвращении отклонения параметров силовой турбины турбомашинного агрегата при внезапном полном или частичном сбросе нагрузки, включающем подачу сигналов о величинах частоты вращения ротора силовой турбины (ncт), частоты вращения ротора газогенератора (nгг) и одного из параметров нагрузки, а также формирование сигнала на управление расходом топлива в камере сгорания, также определяют величину термодинамического параметра газогенератора, сравнивают ее с соответствующим пороговым значением, а при одновременном поступлении сигнала о превышении величины параметра над его пороговым значением и сигнала о внезапном полном или частичном сбросе нагрузки, подают команды на отключение подачи топлива в камеру сгорания и на включение зажигания на заданный промежуток времени, а также дополнительно сравнивают величину nгг с соответствующим пороговым значением nггпорог и величину ncт с соответствующим пороговым значением ncтпорог, определяют первую производную частоты вращения ротора силовой турбины по времени ст, сравнивают ее величину с соответствующим пороговым значением стпорог, а также определяют величину приращения частоты вращения ротора Δnст после сброса нагрузки, и далее, в случае, если ncт< ncтпорог; |ст| < стпорог, Δnст<0 и nгг>nггпорог, подают сигнал на включение подачи топлива в камеру сгорания, дополнительно для обеспечения перехода на подачу топлива в камеру сгорания по штатным законам регулирования при возобновлении подачи топлива при предотвращении отклонения параметров силовой турбины турбомашинного агрегата при внезапном полном или частичном сбросе нагрузки, для определения розжига камеры сгорания и начала увеличения подачи топлива в КС определяют величину приращения температуры за турбиной ΔТт после подачи сигнала на включение подачи топлива в камеру сгорания, сравнивают ее с пороговым значением ΔТтпорог, также вычисляют первую производную частоты вращения ротора газогенератора по времени гг, сравнивают ее с пороговым значением ггпорог1 и при выполнении условий (ΔТт > ΔТтпорог) или (гг > ггпорог1) формируется признак розжига камеры сгорания и начинается увеличение подачи топлива в КС с заранее определенным темпом dGt/dt, при этом первую производную частоты вращения ротора газогенератора по времени гг, сравнивают с пороговым значением ггпорог2 и при выполнении условий (гг > ггпорог2) выполняется переход на управление подачей топлива в камеру сгорания по штатным законам регулирования. Позволяет повысить безопасность функционирования турбомашинного агрегата и обеспечить надежность розжига камеры сгорания и безударного перехода от розжига к управлению расходом топлива по штатным законам регулирования, что позволяет повысить надежность работы турбомашинного агрегата в целом. 1 ил.

Изобретение относится к области энергетики, в частности к способу управления газотурбинным двигателем с малоэмиссионным режимом, и может быть использовано в газоперекачивающих агрегатах. Способ содержит управление малоэмиссионным режимом на основе найденных текущих значений температуры газа на выходе. Задают уставку Ттзад за турбиной высокого давления (ТВД), дополнительно замеряют текущие значения температуры за ТВД Тт, вычисляют разницы заданной уставки Ттзад за ТВД и текущих значений температуры за турбиной высокого давления Тт dT = Ттзад - Тт, сравнивают температуру за ТВД Тт с заданной уставкой Ттзад за ТВД плюс величина гистерезиса Ттзад + 3°С, сравнивают температуру за ТВД Тт с заданной уставкой Ттзад за ТВД минус величина гистерезиса Ттзад - 3°С, формируют управляющее воздействие на клапан перепуска на вход двигателя, при этом алгоритм формирует требуемое положение клапана перепуска на вход двигателя со скоростью А*K tempKPVV (%/с) при Тт < Ттзад - 3°С, со скоростью минус А*K tempKPVV при Тт > Ттзад + 3°С, со скоростью dT*K tempKPVV/3 при Тт < Ттзад + 3°С и Тт > Ттзад - 3°С, где А - темповый коэффициент, равен значению в диапазоне 0,18…0,29, K tempKPVV - коэффициент скорости перекладки клапана перепуска на вход двигателя. Предлагаемое изобретение позволяет обеспечить управление температурой газов за турбиной высокого давления по измеряемому параметру в устойчивой зоне, повысить надежность функционирования газотурбинного двигателя с малоэмиссионной камерой сгорания. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области управления газотурбинными двигателями, используемыми в качестве силовых агрегатов в газовой и энергетических отраслях. Способ содержит измерение температуры газа за турбиной высокого давления Тт термопарами, измерения частоты вращения ротора высокого давления Nвд. Дополнительно измеряют температуру воздуха за компрессором Тк, которую сравнивают с температурой Тт каждой термопары за турбиной высокого давления и при отклонении на заранее заданную величину предельного отклонения температуры Тпред по любой из термопар, в течение 0,4-0,7 секунды формируют логический сигнал о погасании малоэмиссионной камеры сгорания, при условии, что Nвд < 9000 об/мин. Кроме того, отклонение температуры Тт каждой термопары за турбиной высокого давления измеряют в течение 0,4-0,7 секунды, в качестве заранее заданной величины предельного отклонения температуры Тпред применяют 75-85°С. Предлагаемое изобретение позволяет обеспечить повышение надежности функционирования алгоритма контроля погасания малоэмиссионной камеры сгорания по параметрам частоты вращения ротора и температуры за турбиной и, в целом, повышение надежности газотурбинного двигателя. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области авиационного двигателестроения, в частности к способам автоматического управления ГТД с применением реверса тяги. Способ включения реверсивного устройства газотурбинного двигателя при посадке самолета, заключающийся в том, что электронным регулятором газотурбинного двигателя регулируют тягу газотурбинного двигателя и одновременно блокируют выдачу управляющих сигналов на включение реверсивного устройства газотурбинного двигателя при нахождении самолета в воздухе; после касания самолета взлетно-посадочной полосы, которое определяют по наличию первого информационного сигнала обжатия опор шасси типа «Две или три опоры шасси обжаты» или второго информационного сигнала «Шасси обжаты» с использованием датчика частоты вращения колеса передней стойки шасси самолета, переводят рычаг управления двигателем на площадку минимальной обратной тяги, после этого формируют информационный сигнал «Обратная тяга» и открывают механический замок реверсивного устройства, после открытия механического замка формируют информационный сигнал «Замок реверсивного устройства не закрыт»; при этом после перевода рычага управления двигателем на площадку минимальной обратной тяги и одновременном наличии информационных сигналов «Две или три опоры шасси обжаты» или «Шасси обжаты», «Обратная тяга», «Замок реверсивного устройства не закрыт» в автоматическом режиме из электронного регулятора двигателя выдают управляющее воздействие на перевод реверсивного устройства из положения «Прямая тяга» в положение «Обратная тяга», контролируют (диагностируют) положение реверсивного устройства с помощью датчика положения подвижных элементов реверсивного устройства, формируют информационный сигнал в кабину экипажа «Реверсивное устройство включено», после перевода реверсивного устройства в положение «Обратная тяга» переводят рычаг управления двигателем в положение, необходимое для достижения требуемой величины обратной тяги, и автоматически устанавливают режим работы двигателя, соответствующий положению рычага управления двигателем. Осуществляют диагностику отскока самолета от взлетно-посадочной полосы, в случае выявления отскока самолета от взлетно-посадочной полосы в электронном регуляторе двигателя кратковременно снимают блокировку управляющего воздействия на включение реверсивного устройства, при этом включение реверсивного устройства осуществляют после перевода рычага управления двигателем на площадку минимальной обратной тяги независимо от наличия информационных сигналов «Две или три опоры шасси обжаты» или «Шасси обжаты». Предлагаемое изобретение позволяет повысить надежность включения реверсивного устройства авиационного двигателя при посадке самолета с отскоком от взлетно-посадочной полосы и повышение безопасности полета. 4 з.п. ф-лы, 1 ил.

Изобретение относится к электромеханическим системам управления реверсивным устройством газотурбинного двигателя (ГТД) типа FADEC. Электромеханическая система управления реверсивным устройством газотурбинного двигателя (система) содержит электронный регулятор двигателя (РЭД), электронный блок управления электромеханическими приводными органами, по меньшей мере один блок электромеханических приводных органов для открытия или закрытия реверсивного устройства (РУ), который включает, по меньшей мере, электродвигатель, винтовую передачу и механизм стопорения электродвигателя; датчик положения подвижной части РУ, электромеханический замок РУ, датчик положения электромеханического замка РУ, рычаг управления двигателем с выключателем для коммутации электрической цепи электромеханического замка после перевода рычага управления двигателем на площадку работы РУ, при этом выход РЭД соединен с входом электронного блока управления, первый выход электронного блока управления соединен с блоком электромеханических приводных органов, а второй выход электронного блока управления соединен с входом РЭД; бортовую систему регистрации и индикации параметров полетной информации. Дополнительно введен датчик положения рычага управления двигателем, который соединен с РЭД, выходы датчика положения электромеханического замка РУ соединены с входами РЭД; РЭД содержит по меньшей мере два канала управления, электронный блок управления содержит по меньшей мере два канала управления; при этом РЭД имеет возможность обмена информацией между каналами электронного регулятора и передачи информации в бортовую систему регистрации и индикации параметров полетной информации; электронный блок управления электромеханическим приводом имеет возможность обмена информацией между каналами электронного блока управления, а также возможность выявления отказа блока электромеханических приводных органов и передачи информации об исправном состоянии блока электромеханических приводных органов в каждый канал РЭД. При этом электронный блок управления также имеет возможность передачи информации о работе электромеханического привода РУ в бортовую систему регистрации и индикации параметров полетной информации; а датчик положения подвижной части РУ имеет возможность измерения текущего положения подвижной части РУ. Предлагаемое изобретение позволяет повысить надежность и отказобезопасность электромеханической системы управления реверсивным устройством, повысить безопасность полетов, снизить массу электрических коммуникаций, эксплуатационные затраты и в целом сложность газотурбинного двигателя. 6 з.п. ф-лы, 2 ил.

Изобретение относится к области управления газотурбинного двигателя (ГТД) типа FADEC. Электромеханическая система управления реверсивным устройством (РУ) ГТД с высоконадежным электропитанием, которая содержит электронный регулятор двигателя из состава цифровой системы управления двигателем, имеющий по меньшей мере два электронных канала с возможностью выдачи каждым каналом управляющих команд на открытие или закрытие РУ, электронный блок управления РУ, имеющий по меньшей мере два электронных канала управления с возможностью обмена информацией между этими каналами, три электромеханических привода, каждый из которых включает электродвигатель; два отдельных источника электропитания, при этом каждый отдельный источник электропитания соединен с соответствующим каналом электронного регулятора двигателя и электронного блока управления РУ. Дополнительно содержит блок электропитания агрегатов ГТД с возможностью электропитания каждого канала электронного регулятора и/или каждого канала электронного блока управления РУ, а также с возможностью автоматического контроля электропитания, поступающего на вход блока электропитания агрегатов ГТД; автономный электрический генератор двигателя, включающий два канала генерирования электроэнергии и механически соединенный с ротором ГТД, при этом оба канала генерирования автономного электрического генератора соединены с блоком электропитания агрегатов; каждый отдельный источник электропитания содержит независимый канал электропитания постоянным током номинальным напряжением +28 В, при этом по меньшей мере один отдельный источник электропитания содержит три канала электропитания переменным трехфазным током; выходное напряжение +28 В каждого отдельного источника электропитания соединено с входом блока электропитания агрегатов двигателя и с входом электронного блока управления; выходное напряжение трех каналов переменного трехфазного тока по меньшей мере от одного отдельного источника питания соединено с отдельными входами электронного блока управления РУ; электронный блок управления РУ. Дополнительно содержит модуль контроля электропитания с возможностью автоматического контроля электропитания, поступающего на вход электронного блока управления РУ. Позволяет повысить надежность и отказобезопасность электромеханической системы и двигателя, повысить безопасность полетов в целом. 15 з.п. ф-лы, 1 ил.

Изобретение относится к области газотурбинного двигателестроения и может быть использовано в электронно-гидромеханических системах автоматического управления газотурбинных двигателей (ГТД). На всех режимах работы ГТД сравнивают относительное изменение давления с первой наперед заданной величиной, определяемой для каждого типа ГТД экспериментально, а относительную скорость - со второй наперед заданной величиной, определяемой для каждого типа ГТД экспериментально, при формировании сигнала «Помпаж» прекращают подачу топлива в камеру сгорания (КС) на наперед заданное время, определяемое для каждого ГТД экспериментально в процессе приемосдаточных испытаний. Дополнительно на всех режимах работы ГТД от минимального до максимального измеряют частоту вращения ротора свободной турбины (СТ), а также температуру газов за турбиной и частоту вращения ротора газогенератора, вычисляют скорости изменения этих параметров, при закрытых КПВЗ сравнивают скорость изменения температуры газов за турбиной с первой наперед заданной величиной, скорость изменения частоты вращения ротора газогенератора со второй наперед заданной величиной, если скорость изменения температуры газов за турбиной больше первой наперед заданной величины и скорость изменения частоты вращения ротора газогенератора меньше второй наперед заданной величины, а в случае открытых КПВЗ дополнительно сравнивают скорость изменения частоты вращения ротора СТ с третьей наперед заданной величиной, и если скорость изменения температуры газов за турбиной больше первой наперед заданной величины, а скорость изменения частоты вращения ротора газогенератора меньше второй наперед заданной величины и скорость изменения частоты вращения ротора СТ меньше третьей наперед заданной величины, то формируют сигнал «Помпаж параметрический», а при одновременном формировании сигнала «Помпаж» и сигнала «Помпаж параметрический» формируют сигнал «Аварийный останов ГТД» и выполняют аварийный останов ГТД, для чего одновременно с сигналом «Аварийный останов ГТД» выдают команды на открытие КПВ компрессора, КПГ, КПВЗ и снижают расход топлива в КС, далее через 0,1 с после формирования сигнала «Аварийный останов ГТД» выдают команду на открытие первой ЗПВ компрессора, через 0,3 с после формирования сигнала выдают команду на открытие второй ЗПВ компрессора, через 0,5 с после формирования сигнала выдают команду на закрытие стопорного клапана. Достигается сохранение работоспособности и ресурса газотурбинного двигателя, повышение надежности двигателя при возникновении помпажа. 1 ил.

Изобретение может быть использовано в газотурбинном двигателестроении, в частности в системах автоматического управления реверсивными устройствами авиационных газотурбинных двигателей. Отказобезопасная электромеханическая система управления реверсивным устройством газотурбинного двигателя содержит электронный регулятор (3) двигателя, электронный блок (4) управления реверсивным устройством по меньшей мере два электромеханических привода (5.1), (5.2), два комплекта датчиков (5.3), (5.4) и дублированные электрические линии связи. Электронный регулятор (3) имеет по меньшей мере два электронных канала (3.1), (3.2) управления с возможностью обмена информацией между этими каналами и выдачи каждым каналом управляющих команд на открытие или закрытие реверсивного устройства. Электронный блок (4) управления реверсивным устройством имеет по меньшей мере два электронных канала (4.1), (4.2) управления с возможностью обмена информации между этими каналами. Электронный блок (4) управления соединен с электромеханическими приводами (5.1), (5.2), комплектами датчиков положения (5.3), (5.4). В случае отказа обоих каналов (3.1), (3.2) электронного регулятора (3) двигателя электронный блок (4) управления реверсивным устройством выдает управляющую команду в электромеханический привод (5.1), (5.2) перемещать подвижные элементы (6.1), (6.2) реверсивного устройства в заранее определенную безопасную позицию. Каждый канал (3.1), (3.2) электронного регулятора (3) двигателя соединен с соответствующим каналом (4.1), (4.2) электронного блока (4) управления. Электронный блок (4) управления дополнительно содержит модуль (4.3) встроенного контроля электронного блока управления с возможностью выдачи выходного сигнала об исправном или неисправном состоянии каждого канала (4.1), (4.2) электронного блока управления, который подается в оба канала (3.1), (3.2) электронного регулятора. Выдача управляющей команды из электронного регулятора (3) в электронный блок (4) управления на перевод реверсивного устройства из закрытого положения в открытое положение выполняется только при исправном состоянии обоих каналов (3.1), (3.2) электронного регулятора и при исправном состоянии хотя бы одного канала (4.1) или (4.2) электронного блока управления. Перевод реверсивного устройства из открытого положения в закрытое положение выполняется при исправном состоянии хотя бы одного канала (3.1) или (3.2) электронного регулятора и исправном состоянии хотя бы одного канала (4.1) или (4.2) электронного блока управления. Технический результат заключается в повышении отказобезопасности электромеханической системы управления реверсивным устройством и двигателя в целом. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области управления газотурбинными двигателями, используемыми в качестве силовых агрегатов в газовой и энергетических отраслях. Способ заключается в том, что измеряют основные параметры, характеризующие работу двигателя и сравнивают с уставками. В момент включения агрегата зажигания запоминают значение частоты вращения ротора высокого давления Nвдхп и значение температуры за турбиной высокого давления Твдхп, после формирования розжига камеры сгорания и отключения агрегата зажигания, контролируют частоту вращения ротора высокого давления и температуру за турбиной высокого давления. Частоту вращения ротора высокого давления Nвд сравнивают со значением частоты вращения ротора высокого давления Nвдхп до включения агрегата зажигания плюс первая наперед заданная величина ΔNвд. Температуру за турбиной высокого давления Твд сравнивают со значением температуры Твдхп до включения агрегата зажигания плюс вторая наперед заданная величина ΔТвд. При снижении частоты вращения ротора высокого давления Nвд ниже значения частоты вращения ротора высокого давления Nвдхп до включения агрегата зажигания плюс первая наперед заданная величина ΔNвд и снижении температуры за турбиной высокого давления Твд ниже значения температуры за турбиной высокого давления Твдхп до включения агрегата зажигания плюс вторая наперед заданная величина ΔТвд, формируют признак погасания камеры сгорания. Одновременно выполняют отсечку топлива. Предлагаемый способ позволяет повысить надежность функционирования газотурбинного двигателя за счет снижения вероятности пропуска погасания камеры сгорания, в том числе, при работающем стартере. 2 ил.

Изобретение относится к способу создания необходимого давления и расхода топлива в топливной системе авиационного газотурбинного двигателя. Способ создания давления и расхода топлива в топливной системе газотурбинного двигателя, содержащей топливный насос с электрическим приводом, топливный насос с механическим приводом от коробки приводов, дозатор/распределитель топлива, контроллер, датчики, заключающийся в том, что обеспечивают работу топливной системы и газотурбинного двигателя подачей топлива от насоса с электрическим приводом до 40% от максимальной частоты вращения ротора газотурбинного двигателя, постепенно снижают частоту вращения топливного насоса с электрическим приводом, и/или открывают перепуск топлива с выхода насоса с электрическим приводом на вход в топливную систему, при частотах вращения ротора газотурбинного двигателя более 40% обеспечивают необходимый расход топлива подачей от топливного насоса с механическим приводом и от топливного насоса с электрическим приводом, на этапах работы топливного насоса с электрическим приводом в топливной системе, кроме необходимого расхода топлива в камеру сгорания, дополнительно обеспечивают необходимые давление и расход топлива для работы гидроприводных агрегатов и агрегатов распределения топлива, после завершения запуска газотурбинного двигателя и достижения газотурбинным двигателем режима малого газа насос с электрическим приводом переводят в дежурный автономный режим с пониженным напором или выключают, режим земного малого газа и все режимы двигателя с частотами вращения ротора газотурбинного двигателя и приводного вала топливного насоса с механическим приводом более чем на режиме земного малого газа обеспечивают работой топливного насоса с механическим приводом для подачи необходимого расхода топлива в камеру сгорания газотурбинного двигателя и создания необходимого расхода и давления топлива для работы гидроприводных агрегатов, дополнительно, на режимах работы газотурбинного двигателя при частотах вращения ротора газотурбинного двигателя выше 40% и возникновении условий с недостаточным давлением топлива на входе или выходе топливного насоса с механическим приводом, а также при температуре топлива на входе в насос с механическим приводом ниже +10°С включают и/или увеличивают частоту вращения ротора для топливного насоса с электрическим приводом и поддерживают давления или температуру топлива на необходимом уровне. Таким образом, предлагаемое изобретение позволяет исключить ограничения по расходу и давлению топлива при низкой частоте вращения газотурбинного двигателя, снизить величины подогрева топлива от топливного насоса с нерегулируемой производительностью (механический привод) на основных режимах газотурбинного двигателя с низким расходом топлива, повысить отказоустойчивость газотурбинного двигателя по функциональному отказу «самопроизвольное выключение», обеспечить условия для достижения длительных ресурсов топливных насосов, получить оптимальные массогабаритные параметры топливных насосов. 1 ил.

Изобретение относится к газотурбинным двигателям, а точнее - к автоматическому управлению газотурбинным двигателем на переменных режимах

 


Наверх