Патенты автора Васильев Игорь Евгеньевич (RU)

Использование: для мониторинга несущей прочности изделий с применением акустико-эмиссионной диагностики. Сущность изобретения заключается в том, что осуществляют кластерную селекцию регистрируемых локационных импульсов в поле дескрипторов относительной энергии (Eи) и усредненной частоты выбросов (Nи/tи, где Nи - количество выбросов, tи - длительность импульса) на кластеры нижнего (Н), среднего (С) и верхнего (В) энергетического уровня, и вычисление весового содержания локационных импульсов (WH, WC, WB) в указанных кластерах (Wi = (Ni/N∑)⋅100%, где N∑ - суммарное количество локационных импульсов, Ni=H,C,B - их количество в i-том кластере), при этом дополнительно подсчитывают текущий уровень несущей способности изделий по соответствующим формулам, которые включают такие параметры, как WH и WC - ежесекундно регистрируемое весовое содержание локационных импульсов в нижнем и среднем энергетических кластерах, [WH] и [WC] - их пороговые значения при разрушении конструкционного материала, (WH)max ≥ 80%, (WC)min ≤ 20%, (WB)min < 1% - экстремальные значения параметров, регистрируемые при переходе от рассеянного к локальному накоплению повреждений. Технический результат: повышение достоверности и точности оценки текущего уровня несущей способности изделий с помощью АЭ диагностики. 3 ил.

Использование: для моделирования неустойчивых переходных процессов накопления повреждений в диагностируемом объекте с регистрацией точек структурной и системной бифуркации. Сущность изобретения заключается в том, что для регистрации динамики переходных процессов при формировании насыпного конуса и изменения их тренда в точках структурной и системной бифуркации, вследствие накопления критической массы гранулята на вершине конуса, его оседания под действием собственного веса и последующего лавинообразного обрушения, предлагается с применением конической поверхности искусственно создавать условия обрушения гранулята при малой толщине формируемого слоя δ=10-20 мм, а временное стробирование переходных процессов осуществлять посредством синхронной записи видеоизображений и массивов локационных импульсов, регистрируемых с применением акустико-эмиссионного мониторинга, ежесекундно разделяя сигналы АЭ на кластеры нижнего, среднего и верхнего энергетического уровня, подсчитывая частоту их регистрации ωi=H,C,B и процентное содержание Wi=H,C,B, фиксируя на графиках динамику этих параметров и изменение тренда переходных процессов в точках структурной и системной бифуркации, подтверждая моменты их регистрации кадрами высокоскоростной видеосъемки. Технический результат: обеспечение возможности моделирования динамики изменения тренда накоплений повреждений в точках структурной и системной бифуркации, возникающих в диагностируемом объекте. 2 н. и 6 з.п. ф-лы, 8 ил.

Использование: для мониторинга степени деградации структуры материала и прогнозирования остаточной прочности изделия с применением акустико-эмиссионной диагностики. Сущность изобретения заключается в том, что в процессе акустико-эмиссионного мониторинга изделия при разбиении регистрируемых акустико-эмиссионных импульсов на кластеры низшего, среднего и верхнего энергетического уровня по величине относительной энергии подсчитывают не только накопление весового содержания локационных импульсов, отражающих микро, мезо и макро-структурные процессы разрушения материала, но и количество регистрируемых локационных импульсов в единицу времени (частоту регистрации) в кластерах Н, С, В, которые используют вместе с весовыми параметрами для оценки степени деградации структуры материала и прогноза остаточной прочности и потери изделием несущей способности. Технический результат: обеспечение возможности повышения достоверности и точности оценки степени деградации структуры материала изделия и прогноза его остаточной прочности без привлечения других методов технической диагностики и неразрушающего контроля. 1 табл., 1 ил.

Изобретение относится к области автоматики и вычислительной техники и может использоваться при автоматизации объектов управления ракетно-космической области, технического и стартового комплексов космодрома. В систему введены система поддержания принятия решений, формирователь метаобраза объекта управления, автоматизированное рабочие место лица принимающего решения, вспомогательные блоки управления, связи и коммутации по числу систем обслуживания космодрома, соединенные со своей системой сбора и обработки сигналов мониторинга и управления, включающей блоки ввода/вывода измерительной информации и сигналов управления, блоки кабельных соединений, блоки соединений датчиков и исполнительных механизмов, связанные с датчиками и исполнительными механизмами объектов управления, адаптеры метаданных. Уменьшается время подготовки и повышается надежность принятия управляющих решений в процессе выполнения технологических операций подготовки и пуска ракеты космического назначения. 3 з.п. ф-лы, 8 ил.

Изобретение относится к устройствам регулирования температуры термостатирующего воздуха, подаваемого на космическую головную часть (КГЧ). Устройство регулирования температуры термостатирующего воздуха содержит два дополнительных датчика температуры, один из которых установлен на входе нагревателя, а второй - непосредственно на нагревателе. Выходы обоих датчиков подключены к соответствующим входам блока управления, связанного также двунаправленными шинами с устройством подготовки термостатирующего воздуха пониженного давления и с введенным в устройство вычислительным блоком, другой двунаправленной шиной связанного с введенным в устройство блоком хранения базы данных и знаний, вход которого и соответствующий вход блока управления служат для подключения к рабочему месту оператора. Блок управления выполнен с возможностью обеспечения двух режимов управления - пропорционально-интегрального для предварительного нагрева теплоносителя и пропорционально-интегрально-дифференциального для отслеживания температуры термостатирующего воздуха. Техническим результатом изобретения является повышение точности регулирования температуры. 4 ил.

Использование: для мониторинга степени деградации структуры материала и определения остаточной прочности изделия. Сущность изобретения заключается в том, что выполняют акустико-эмиссионный (АЭ) контроль с использованием локационных групп преобразователей активной эмиссии, предусилителей и системы сбора-обработки регистрируемых массивов импульсов активной эмиссии, при этом в режиме реального времени осуществляют градацию массивов импульсов активной эмиссии по уровню относительной энергии и усредненной частоте выбросов, формируют нижний, средний и верхний кластеры в поле указанных параметров, и вычисляют процентное содержание импульсов в каждом кластере, отражающее микро-, мезо- и макроструктурные разрушения материала, причем в качестве информативных и устойчивых акустико-эмиссионных параметров для кластерного разделения сигналов используют показатель относительной энергии импульса, измеряемого в децибелах и соответствующего количеству выбросов в единицах, по которым при сопоставлении с результатами тестовых испытаний материала на разрушение определяют степень деградации и остаточной прочности изделия в зоне акустико-эмиссионного контроля, причем границы формируемых кластеров устанавливают по результатам предварительного тестирования материала изделия исходя из природы источников излучения импульсов и используемого уровня порога дискриминации сигналов. Технический результат: обеспечение возможности в процессе акустико-эмиссионной диагностики изделия осуществлять мониторинг степени деградации структуры материала и определять остаточную прочность изделия в зоне АЭ контроля без привлечения других методов технической диагностики и неразрушающего контроля.

Информационно-управляющий комплекс автоматизированной системы управления (ИУК АСУ) подготовкой двигательных установок (ПДУ) и технологическим оборудованием (ТО) ракет космического назначения (РКН) на техническом и стартовом комплексах (ТК И СК) содержит автоматизированные рабочие места операторов (АРМ), блок управления связи и коммутации (БУСК) с устройствами коммутации локальной вычислительной сети (КЛВС), шлюз связи с комплексом единого времени (ШСЕВ), блоки ввода-вывода измерительной информации и сигналов управления (БВВИ), табло коллективного пользования (ТКП), блоки кабельных соединений (БКС), блоки соединений датчиков и исполнительных механизмов (БСД), четыре двунаправленные шины данных, исполнительные механизмы БКН, соединенные определенным образом. Блоки БВВИ содержат блок ввода дискретных данных (БДД), аналого-цифровой и цифроаналоговый преобразователи (АЦП И ЦАП), формирователь сигналов управления (ФСУ), устройство первичного электропитания (УПЭ), блоки управляемого вторичного электропитания (БУВЭП), микроконтроллер блока (МКБ), драйверы управления передачи данных по двунаправленным шинам (ДУПД), контроллер целостности цепей управления (КЦУ). БУСК содержит базу данных технологической информации (БДТИ), систему управления информационным обменом (СУИО), устройство управления АРМ пользователя и технологическим процессом (УУ АРМ/ТП). Обеспечивается проведение всех видов испытаний двигательных установок ракеты-носителя на техническом и стартовом комплексах. 24 ил.

Использование: для идентификации источников сигналов акустической эмиссии (АЭ). Сущность изобретения заключается в том, что измеряют максимальную амплитуду импульса, число выбросов и длительность импульсов сигналов, после чего на основании проведенных измерений осуществляют распознавание источников сигналов акустической эмиссии. Технический результат: повышение достоверности при распознавании источников сигналов акустической эмиссии. 7 ил.

Использование: для исследования деформации и напряжений в хрупких тензоиндикаторах. Сущность: что проводят акустико-эмиссионнные измерения сигналов образования трещин в хрупком тензопокрытии, при этом дополнительно измеряют концентрацию аэрозолей в приповерхностном слое хрупкого тензопокрытия, при этом при скорости изменения нагрузки до 0,1 кН/с с учетом 30-секундной поправки на задержку регистрации диагностируют процесс разрушения оксидной пленки тензоиндикатора и материала подложки. Технический результат: обеспечение возможности диагностики предельного состояния и раннего предупреждения об опасности разрушения конструкций в процессе их технической эксплуатации, а также оценки прочности, выявления дефектов и зон действия максимальных напряжений в условиях стендовых и натурных испытаний образцов и деталей. 4 ил.

Изобретение относится к устройствам технической диагностики и неразрушающего контроля материалов и изделий и предназначено для диагностики их предельного состояния и раннего предупреждения об опасности разрушения

 


Наверх