Патенты автора Рязанцев Леонид Борисович (RU)

Изобретение относится к радиолокации и может использоваться в радиотехнических системах, установленных на подвижных объектах, для получения радиолокационных изображений (РЛИ) в процессе дистанционного зондирования земной либо водной поверхности. Технический результат состоит в повышении качества формируемых РЛИ в условиях траекторных нестабильностей полета носителя за счет автоматического выбора оптимального времени синтезирования апертуры антенны, осуществляемого на основе предварительного анализа статистических характеристик траекторных нестабильностей, без существенного увеличения вычислительных затрат. Заявлен способ, заключающийся в зондировании земной либо водной поверхности, приеме, оцифровке и сжатии по дальности отраженных сигналов, формировании двумерного дальностного портрета зоны обзора на основе построчного запоминания в течение времени синтезирования апертуры сжатых по дальности в каждом периоде зондирования сигналов, формировании выборок отсчетов траекторного сигнала из сформированного двумерного дальностного портрета в соответствии с законами миграции точечных отражателей для каждого элемента разрешения формируемого РЛИ, фокусировке и расчете значений яркости для каждого элемента разрешения РЛИ путем суммирования отсчетов в выборке. При этом перед формированием двумерного дальностного портрета зоны обзора получают показания бортовой инерциально-навигационной системы по скорости, высоте и плановым координатам, с использованием которых рассчитывают статистические характеристики траекторных нестабильностей полета носителя РЛС и в зависимости от их значений выбирают из табличных данных, находящихся в памяти бортовой ЭВМ, оптимальное время синтезирования, которое используют при формировании РЛИ. Заявлено также устройство для осуществления способа. 2 н.п. ф-лы, 4 ил.

Изобретение относится к радиолокации и может использоваться в радиотехнических системах непрерывного излучения, установленных на подвижных объектах, для получения радиолокационного изображения (РЛИ) в процессе дистанционного зондирования земной (водной) поверхности. Достигаемый техенческий результат - уменьшение требуемого объема памяти вычислительного устройства и времени формирования РЛИ. Способ формирования детальных радиолокационных изображений в РЛС с синтезированной апертурой антенны состоит в зондировании земной (водной) поверхности, приеме, оцифровке, интерполяции и сжатии по дальности отраженных сигналов, формировании двумерного дальностного портрета зоны обзора путем построчного запоминания в течение времени синтезирования апертуры сжатых по дальности в каждом периоде зондирования сигналов, формировании выборок отсчетов траекторного сигнала из сформированного двумерного дальностного портрета в соответствии с законами миграции точечных отражателей для каждого комплексного отсчета формируемого РЛИ, расчете значений каждого комплексного отсчета РЛИ путем демодуляции сигналов сформированных выборок с последующим суммированием их отсчетов, при этом дополнительно осуществляют компенсацию фазовых скачков сигналов каждой выборки путем ее перемножения с корректирующим сигналом. 9 ил.

Изобретение относится к радиолокации и может использоваться в радиотехнических системах с непрерывным излучением для определения дальности, радиальной скорости и углового положения высокоскоростных целей при их значительном перемещении за период модуляции зондирующего сигнала. Достигаемый технический результат – повышение точности определения пространственного положения цели за счет определения ее углового положения. Способ определения координат цели в радиолокационных станциях с непрерывным излучением состоит в зондировании цели широкополосным сигналом с линейной частотной модуляцией (ЛЧМ), приеме, усилении и демодуляции отраженных сигналов с двух разнесенных в пространстве на расстояние d антенн, формировании набора опорных сигналов с различной крутизной ЛЧМ, перемножении каждого сигнала из набора с сигналом биений одного из каналов, вычислении комплексных спектров полученных результатов перемножений, поиске частотной составляющей с максимальной амплитудой в вычисленных комплексных спектрах, определении ее фазы ϕ1 и положения, характеризующегося соответствующими номером опорного сигнала nc и значением ее частоты fRд, определении по значению nc опорного сигнала из набора и соответствующую ему радиальную скорость цели , вычислении по значению fRд дальности до цели , компенсации дополнительной ЛЧМ в сигнале другого канала путем умножения на опорный сигнал с номером nс, вычислении комплексного спектра компенсированного сигнала, определении значения фазы ϕ2 спектральной составляющей на частоте fRд, вычислении по разности фаз углового положения цели Θ. 2 ил.

Изобретение относится к области радиотехники, в частности к способам нелинейной радиодальнометрии источников радиоизлучения, и может использоваться для обнаружения и измерения расстояния до излучающих объектов с нелинейными электрическими свойствами, в частности радиопередатчиков. Достигаемый технический результат - уменьшение погрешности измерения дальности до источника радиоизлучения с нелинейными электрическими свойствами за счет расширения диапазона однозначного измерения дальности. Указанный результат достигается тем, что источник радиоизлучения с нелинейными электрическими свойствами, дальность до которого необходимо измерить, облучают внешним электромагнитным полем, частота которого незначительно отличается от частоты колебаний источника радиоизлучения, измеряя разность фаз между принятым колебанием первой комбинационной составляющей и опорным колебанием той же частоты, формируемым в радиодальномере путем умножения принятого сигнала источника радиоизлучения и излучаемого радиодальномером сигнала с последующим выделением их разностной частоты, определяют дальность до источника радиоизлучения. Учитывая, что длина волны принятого колебания первой комбинационной составляющей превышает длину волны облучающего колебания, как правило, на несколько порядков, то диапазон однозначного измерения дальности существенно увеличивается по сравнению с обычным фазовым методом линейной дальнометрии при одинаковой частоте облучения, что приводит к уменьшению погрешности измерения дальности. 1 ил.

Изобретение относится к технике обеспечения безопасности дорожного движения, в частности к интеллектуальным транспортным системам, автомобильным средствам обзора пространства в переднебоковом секторе и удержания автомобиля в заданной полосе движения. Способ обеспечения курсовой устойчивости и безопасности движения автомобиля содержит этапы приема изображения с помощью видеокамеры и РЛС с синтезированной апертурой, анализа наличия разметки или дорожной полосы, формирование цифрового радиолокационного изображение (РЛИ) и/или радиоголограмму полотна дороги и предметов, расположенных на обочинах справа и слева от полотна дороги, определение границ дорожной полосы, распознавание положения автомобиля, определение векторной скорости движения автомобиля, экстраполяции траектории движения автомобиля с учетом текущей векторной скорости, расчет оценки наступления экстренного события на основании упомянутой экстраполяции и активации средств безопасности автомобиля на основании упомянутой оценки. Технический результат заключается в обеспечении курсовой устойчивости автомобиля в сложных метеорологических условиях, в том числе и на дорогах с отсутствующей или нарушенной дорожной разметкой. 2 н. и 10 з.п. ф-лы, 6 ил.

Изобретение относится к радиолокации и может использоваться в радиотехнических системах для определения собственных координат летательного аппарата по формируемому в процессе полета радиолокационному изображению. Достигаемый технический результат - увеличение точности и оперативности определения координат летательного аппарата (ЛА) за счет непосредственного измерения высоты полета с помощью радиолокационной станции с синтезированной апертурой антенны, установленной на его борту. Указанный результат достигается тем, что высота полета ЛА измеряется непосредственно по сигналам надирных отражений, которые поступают на вход приемного устройства по боковым лепесткам диаграммы направленности приемной антенны. Для повышения точности измерения высоты полета ЛА осуществляют некогерентное усреднение сигналов дальностных портретов, полученных за время синтезирования апертуры. Полученный сигнал усредненного дальностного портрета сравнивают с заданным порогом, тем самым осуществляют обнаружение выброса сигнала надирных отражений. Значение порога выбирают исходя из заданного уровня ложной тревоги и среднего уровня собственных шумов приемного устройства. Положение фронта выброса сигнала надирных отражений на усредненном дальностном портрете соответствует высоте полета ЛА. Повышение точности измерения высоты обеспечивает повышение точности преобразования кадра первичного РЛИ из системы координат «доплеровская частота - наклонная дальность» в нормальную земную систему координат, что в свою очередь повышает точность сопоставления эталонного изображения и преобразованного РЛИ опорного участка местности и, как следствие, определение координат ЛА. 2 ил.

Изобретение относится к радиолокации и может использоваться в радиотехнических системах с непрерывным излучением для определения дальности и радиальной скорости высокоскоростных целей со сниженной радиолокационной заметностью. Достигаемый технический результат - увеличение дальности обнаружения и повышение точности определения дальности и радиальной скорости высокоскоростных целей со сниженной радиолокационной заметностью. Сущность способа заключается в приеме отраженного сигнала, его демодуляции, запоминании демодулированного сигнала биений в течение периода модуляции зондирующего сигнала, определении скорости изменения частоты его линейной частотной модуляции (ЛЧМ) и расчете с ее помощью радиальной скорости цели с последующим формированием опорного сигнала, демодуляцией запомненного сигнала и определением по его частоте дальности до цели. Устройство для реализации способа содержит частотный модулятор, генератор высокой частоты, передающую антенну, а также приемную антенну, первый умножитель сигналов, усилитель низкой частоты, измеритель скорости изменения частоты ЛЧМ сигнала, вычислитель радиальной скорости, формирователь опорного сигнала, второй умножитель сигналов, частотный анализатор и вычислитель дальности, а также запоминающее устройство и устройство синхронизации. Перечисленные средства определенным образом соединены между собой. 2 н.п. ф-лы, 1 ил.

Изобретение относится к радиолокации и может использоваться в радиотехнических системах, установленных на подвижных объектах, для получения радиолокационного изображения (РЛИ) в процессе дистанционного зондирования земной (водной) поверхности. Достигаемый технический результат - повышение разрешения радиолокационного изображения по наклонной дальности и расширение динамического диапазона за счет синхронизации момента начала записи эхо-сигнала с началом очередного зондирования. Указанный результат достигается за счет того, что способ формирования радиолокационного изображения в радиолокационной станции с синтезированной апертурой антенны состоит в зондировании, приеме, запоминании эхо-сигналов, определении момента начала зондирования, построении двумерной матрицы путем построчного с момента начала зондирования считывания отсчетов запомненного эхо-сигнала, сжатии двумерной матрицы по дальности и азимуту, при этом во время запоминания принятого эхо-сигнала в моменты начала зондирования осуществляют вставку пауз длительностью τи путем его амплитудной манипуляции, а во время определения момента начала зондирования осуществляют интегрирование абсолютного значения запомненного сигнала в пределах скользящего окна, представляющего собой временной строб с длительностью τи и изменяющимся временным смещением от нулевого значения, соответствующего началу запоминания эхо-сигнала, до значения, равного периоду зондирования, определяют временное положение минимума полученного интеграла, который соответствует моменту начала зондирования. 2 ил.

Изобретение относится к радиолокации и может использоваться в радиотехнических системах непрерывного излучения, установленных на подвижных объектах, для получения радиолокационного изображения в процессе дистанционного зондирования земной (водной) поверхности. Достигаемый технический результат - выравнивание среднего уровня яркости радиолокационного изображения в направлении дальней границы зоны обзора, увеличение дальности действия радиолокационной станции. Указанный результат достигается за счет выравнивания амплитудно-частотного спектра сигнала перед его оцифровкой, при этом после выравнивания уменьшается динамический диапазон амплитуды сигнала на входе аналого-цифрового преобразователя, что, в свою очередь, приводит к снижению минимального уровня сигнала, который может быть оцифрован с его помощью. Для практической реализации способа цифровой обработки сигналов в радиолокационных станциях с синтезированной апертурой антенны непрерывного излучения в устройство, содержащее последовательно соединенные приемное устройство и умножитель, последовательно соединенные аналого-цифровой преобразователь и цифровой процессор, а также передающее устройство, выход которого соединен со вторым входом умножителя, дополнительно введена частотная корректирующая цепь, вход которой соединен с выходом умножителя, а выход - со входом аналого-цифрового преобразователя, при этом амплитудно-частотная характеристика частотной корректирующей цепи имеет обратно пропорциональную зависимость относительно закона изменения амплитуд частотных составляющих от дальности. 2 н.п. ф-лы, 1 ил.

Изобретение относится к радиолокации и может использоваться в радиотехнических системах, установленных на подвижных объектах, для получения радиолокационного изображения (РЛИ) в процессе дистанционного зондирования земной (водной) поверхности. Достигаемый технический результат – повышение разрешения радиолокационного изображения по наклонной дальности и расширение его динамического диапазона за счет синхронизации момента начала записи эхо-сигнала с началом очередного зондирования. Указанный результат достигается за счет того, что устройство формирования радиолокационного изображения в радиолокационной станции с синтезированной апертурой антенны содержит передающее устройство и устройство расширения импульсов, а также соединенные последовательно приемное устройство, устройство размыкания, аналого-цифровой преобразователь, запоминающее устройство, устройство управления, устройство выборки отсчетов, устройство определения модуля сигнала, интегратор, устройство определения положения минимума, устройство построчного формирования двумерной матрицы, устройство сжатия по дальности, устройство сжатия по азимуту, устройство отображения РЛИ, при этом запоминающее устройство первым и вторым выходами соединено с первым входом устройства построчного формирования двумерной матрицы и вторым входом устройства выборки отсчетов соответственно, а вторым и четвертым входами - с вторым выходом устройства построчного формирования двумерной матрицы и вторым выходом устройства выборки отсчетов соответственно, кроме того, передающее устройство через устройство расширения импульсов соединено с вторым входом устройства размыкания. 1 ил.

Изобретение относится к радиолокации и может использоваться в радиотехнических системах, установленных на подвижных объектах, для получения радиолокационного изображения (РЛИ) в процессе дистанционного зондирования земной поверхности. Достигаемый технический результат - повышение вероятности правильного распознавания малоразмерных и распределенных объектов на местности. Сущность заявляемого способа состоит в том, что при формировании РЛИ осуществляется компенсация линейного пространственного искажения изображений на восходящем и нисходящем участке изменения линейно-частотно-модулированного (ЛЧМ) сигнала и дополнительная фокусировка изображений, учитывающая свойства широкополосности ЛЧМ. Для этого после процедуры приема и записи в память эхо-сигналов, отраженных от всех объектов в зоне обзора радиолокационной станции с синтезированной апертурой, осуществляется разделение данных, содержащих отсчеты эхо-сигнала на восходящем и нисходящем участках изменения частоты ЛЧМ зондирующего сигнала. Затем производится параллельное сжатие этих данных по дальности и вычисление оценки ошибки фазовых искажений в процессе автофокусировки. На этапе сжатия данных по азимуту формируется пара РЛИ, при этом используются опорные функции, отличающиеся друг от друга несущими частотами для восходящего и нисходящего участков изменения частоты ЛЧМ сигнала. На следующем этапе осуществляется последовательное вычисление коэффициента взаимной корреляции этих РЛИ при различных значениях линейной ошибки дискретизации эхо-сигналов в соответствии с алгоритмом «золотого сечения». С учетом вычисленной оценки данной ошибки производится дополнительная фокусировка каждого изображения, а после геометрической коррекции пары РЛИ с целью приведения их к единому масштабу, осуществляется их некогерентное суммирование.1 ил.

Изобретение относится к области радиолокации и может быть использовано в радиолокационной технике для оценки количества целей в группе. Достигаемым техническим результатом является повышение вероятности правильного определения количества целей в группе при радиолокационном наблюдении маневрирующих целей. Указанный результат достигается тем, что при принятии решения о соответствии локального максимума двум целям, то есть при значении ширины интервала больше пороговой ширины или квадратичной невязки отсчетов комплексных корреляционных сумм принятого сигнала и отсчетов эталонных корреляционных сумм сигнала одной цели больше порога невязки, определяют величину радиального ускорения цели ar, если ar=0, то принимают решение о соответствии локального максимума двум целям, а если ar≠0, то при определении невязки используют отсчеты эталонных корреляционных сумм сигнала одной цели, движущейся с радиальным ускорением ar, если невязка меньше порога невязки, то принимают решение о соответствии локального максимума одной ускоряющейся цели, иначе - двум целям.1 з.п. ф-лы, 3 ил.

Изобретение относится к обнаружителям маневра воздушной цели радиолокационными системами сопровождения

 


Наверх