Патенты автора Одиноков Вадим Васильевич (RU)

Изобретение относится к области электронной техники и может быть использовано в процессах термической обработки полупроводниковых пластин, например диффузии ионно-имплантированных материалов в полупроводниковых структурах. Сущность изобретения заключается в том, что в вакуумный комплекс термического отжига полупроводниковых пластин, содержащий рабочую камеру 1, включающую нагреватель 2, держатель пластин 5, сопряженный с первым приводом 6, и включающую также первый модуль откачки 8, при этом вакуумный комплекс содержит также модуль охлаждения 22, введена перегрузочная камера 10, сопряженная с рабочей камерой 1 и включающая манипулятор 11 с захватом пластин 12, при этом модуль охлаждения 22 расположен в перегрузочной камере 10 и выполнен в виде корпуса 24 с полостью 25, сопряженного с источником хладагента 23, причем в корпусе 24 сформированы первые отверстия 26, расположенные в сторону захвата пластин 12, в котором выполнены вторые отверстия 14. Технический результат изобретения заключается в повышении равномерности охлаждения полупроводниковых пластин. 2 з.п. ф-лы, 2 ил.

Изобретение относится к области устройств для ректификации различных жидкостей суббойлерной очистки путем испарения их при температурах ниже точки кипения с последующей конденсацией паров и может быть использовано для очистки, например, кислот, щелочей, спиртов, масел. В дистиллятор введен модуль подачи и регулировки расхода жидкости, соединенный с заливным штуцером, конденсатор выполнен в виде, по меньшей мере, одного цилиндрического модуля с осью симметрии O1-O2, герметично установленного на испарителе, и вторым сливным штуцером. Цилиндрический модуль содержит цилиндрический корпус с первым модулем охлаждения, включающим первую цилиндрическую стенку, и второй модуль охлаждения, расположенный внутри цилиндрического корпуса и представляющий собой стакан со второй цилиндрической стенкой и торцом. На цилиндрическом корпусе внутри него расположен сборник, сопряженный с первой цилиндрической стенкой, размещенный ниже торца и перекрывающий зазор между первой цилиндрической стенкой и второй цилиндрической стенкой, причем каждый сборник соединен с магистралью вторым сливным штуцером. Технический результат: повышение степени очистки жидкости. 4 з.п. ф-лы, 2 ил.

Изобретение относится к вакуумно-плазменному осаждению покрытия. Устройство содержит технологическую камеру, в которой установлен подложкодержатель с подложкой, имеющий продольную ось О-О1, разрядную камеру с геликонным источником плазмы, закрепленным на технологической камере симметрично продольной оси О-О1, газовую систему, соленоидальную антенну, расположенную с внешней стороны разрядной камеры, и магнитную систему, расположенную с внешней стороны технологической камеры симметрично продольной оси О-О1 и включающую первую соленоидальную магнитную катушку и вторую соленоидальную магнитную катушку, выполненные с возможностью перемещения вдоль продольной оси О-О1. Подложкодержатель выполнен с возможностью вращения вокруг продольной оси О-О1 и перемещения вдоль нее. Устройство снабжено по меньшей мере одним магнетроном, направленным в сторону подложкодержателя, выполненным с возможностью ионной стимуляции процесса осаждения покрытия и размещенным с возможностью перемещения вдоль оси О-О2, расположенной под углом 30-60° к плоскости подложки. Обеспечивается увеличение скорости и равномерности осаждения покрытия на подложке, снижение загрязнения покрытия продуктами разрушения стенок технологической камеры. 3 з.п. ф-лы, 5 ил.

Изобретение относится к оборудованию для производства интегральных схем микромеханических и оптоэлектронных устройств. Сущность изобретения заключается в том, что в устройство введено по меньшей мере одно дополнительное сопло 5 с продольной осью O3-О4, оси O3-O4 сопел 5 расположены под углами λ, находящимися в диапазоне 20-80° к поверхности А платформы 1, причем ось O1-O2 и оси O3-O4 сопел 5 не пересекаются, а проекции осей O3-O4 в плоскости поверхности А платформы 1 составляют углы β с осями, проходящими через центр платформы 1 О и центры оснований 13 сопел 5, при этом оси O3-O4 со сторон, противоположных основаниям 13, направлены по касательной к образующей В столика 3 и могут отклоняться от этого направления в диапазоне +/- 20°. Технический результат изобретения заключается в повышении степени ионизации компонентов газовой смеси за счет вихревого движения по спирали потоков газа внутри колпака. 3 з.п. ф-лы, 4 ил.

Изобретение относится к области робототехники, в частности к манипуляторам для перемещения полупроводниковых пластин. Задача изобретения заключается в создании прецизионного манипулятора для транспортировки полупроводниковых пластин в производстве изделий электронной техники. Манипулятор содержит основание с установленным на нем подшипниковым узлом с коаксиально расположенными в корпусе внутренним валом и внешним валом, привод, руку, состоящую из плеча, локтя и кисти, на концах которой расположено не менее одного держателя пластин. Изобретение обеспечивает повышение точности позиционирования. 6 з.п. ф-лы, 5 ил.

Изобретение относится к оборудованию для осаждения тонких пленок и покрытий из паров химических веществ на плоскую полупроводниковую подложку и может быть использовано в технологических процессах изготовления электронных и электромеханических приборов. Устройство для осаждения тонких пленок из газовой фазы на плоскую полупроводниковую подложку содержит камеру, в которой расположены подложкодержатель, модули подачи и откачки технологических газов, модули подачи и откачки инертных газов и нагреватель. Нагреватель установлен над подложкодержателем, подложкодержатель выполнен с круглым гнездом с дном для размещения в нем подложки рабочей стороной вниз, модули подачи и откачки технологических газов и модули подачи и откачки инертных газов встроены в подложкодержатель. Количество модулей подачи и откачки технологических газов кратно трем. Модули подачи и откачки инертных газов расположены между модулями подачи и откачки технологических газов. Каждый модуль подачи и откачки технологических газов включает источник струйной плазмы, выполненный с каналом, в котором расположен первый электрод и по меньшей мере один второй электрод. Источник струйной плазмы и по меньшей мере один второй электрод сопряжены посредством углубления, сформированного в дне круглого гнезда. Источник струйной плазмы установлен под углом 40-60° ко дну круглого гнезда, расположенным в первой плоскости, перпендикулярной второй плоскости, проходящей через ось подложкодержателя, и радиус, соединяющий центр подложкодержателя с центром выхода источника струйной плазмы в углубление. В частных случаях осуществления изобретения между подложкодержателем и нагревателем установлена оптически прозрачная пластина. Обеспечивается упрощение конструкции устройства и использование меньшего количества исходных реагентов для осаждения тонких пленок из газовой фазы. 1з.п. ф-лы, 4 ил.

Реактор для плазменной обработки полупроводниковых структур относится к области технологических устройств для травления технологических материалов в области производства изделий электронной техники и может быть использован, например, для проведения высокоаспектных процессов травления кремния в производстве микроэлектромеханических систем (МЭМС) или для создания щелевой изоляции при реализации технологии трехмерной интеграции кристаллов. Сущность изобретения заключается в том, что в реакторе для плазменной обработки полупроводниковых структур блок подачи и дозирования технологических газов выполнен в виде первого блока импульсной подачи и дозирования технологических газов 4. Причем в устройство введен второй газораспределительный модуль 24 со вторым блоком импульсной подачи и дозирования технологических газов 26 и с блоком синхронизации 28, при этом блок синхронизации 28 сопряжен с первым блоком импульсной подачи и дозирования технологических газов 4, со вторым блоком импульсной подачи и дозирования технологических газов 26, с блоком подачи напряжения 12, с первым блоком питания 20 первой соленоидальной катушки 16 и со вторым блоком питания 21 второй соленоидальной катушки 17. Технический результат изобретения заключается в увеличении однородности и скорости плазмохимического травления на подложках диаметром более 100 мм, а также в обеспечении возможности реализации анизотропного селективного плазмохимического травления кремниевых структур в производстве МЭМС или для создания щелевой изоляции при реализации технологии трехмерной интеграции кристаллов. 7 з.п. ф-лы, 7 ил.

Изобретение относится к устройству для формирования многокомпонентных и многослойных покрытий и может быть использовано в автомобилестроении, в медицине при создании защитных и биосовместимых слоев дентальных и ортопедических имплантатов, для изготовления тонкопленочных интегральных аккумуляторов и в химических реакторах. Вакуумная камера (1) включает плазменно-дуговой источник (2) с магнитной системой, катодом (3) и анодом (4) с продольной осью 01-02, источник газовой плазмы (8) с первой электромагнитной катушкой ( 9), со второй электромагнитной катушкой источника (10) и с системой напуска и контроля технологических газов (11). Держатель (20) подложки (21) размещен симметрично оси O3-O4 источника газовой плазмы (8) и включает средства откачки (30). Магнетронный источник (36) имеет продольную ось 05-06. Магнитная система плазменно-дугового источника (2) включает электромагнитную катушку плазменно-дугового источника (5). Источник газовой плазмы (8) выполнен в виде кварцевого цилиндра (12) с размещенной симметрично оси 03-04 антенной (13). Технический результат изобретения заключается в расширении номенклатуры наносимых материалов класса диэлектриков и композиционных материалов, состоящих из диэлектриков, проводников, а также полупроводников, и в обеспечении возможности нанесения покрытий послойно с высокой скоростью, равномерностью и адгезией. 2 з.п. ф-лы, 1 ил.

Суть настоящего изобретения состоит в процессе формирования трехмерных структур топологических элементов функциональных слоев на поверхности подложек. Способ основан на применении перспективной «аддитивной технологии», то есть топологические элементы функционального слоя создаются на локальных участках подложки путем прямого осаждения на них материала. В процессе формирования элементов не используются фотошаблоны и фоторезистивные маски. Задачей настоящего изобретения является повышение воспроизводимости и точности формирования топологических элементов функциональных слоев, а также увеличение производительности и снижение стоимости способа их получения. 3 ил.

Изобретение относится к плазменно- дуговому устройству для формирования покрытий и может быть эффективно использовано при формировании защитных и биосовместимых слоев дентальных и ортопедических имплантатов, при изготовлении технологических слоев электролитических ячеек тонкопленочных интегральных аккумуляторов и в химических реакторах, которые работают в агрессивных средах и в условиях высоких температур. В вакуумной камере (1) с вертикально расположенной продольной осью O-O1 осесимметрично размещены катод (3), охватывающий его анод (4) и экранирующий электрод (5) катодного узла (2). Устройство также содержит магнитную систему, держатель (21) подложки (22) и источник питания (25. Катод (3) выполнен из электропроводящего материала, а экранирующий электрод (5) расположен между катодом (3) и анодом (4). Магнитная система состоит из последовательно размещенных первой электромагнитной катушки (10) с торцевой поверхностью (11), расположенной в плоскости, перпендикулярной продольной оси О-O1 камеры(1), и второй электромагнитной катушки (15). Источник питания (25) подключен к аноду (4) и катоду (3) с обеспечением возникновения между ними электрической дуги. Катодный узел (2) снабжен первым приводным механизмом (30) с первым силовым блоком (42) и вторым приводным механизмом (33). Катод (3) установлен в камере (1) с расположением его рабочей поверхности (35) в плоскости, перпендикулярной продольной оси O-O1 камеры и с возможностью перемещения вдоль продольной оси O-O1 камеры, посредством первого приводного механизма с обеспечением совмещения плоскости размещения рабочей поверхности (35) катода (3) с плоскостью размещения торцевой поверхности (11) первой электромагнитной катушки (10), и с возможностью вращения катода (3) вокруг продольной оси O-O1 камеры посредством второго приводного механизма (33). В результате любой степени выработки рабочей поверхности катода, изобретение позволяет сохранять условия оптимальности положения катода по отношению к магнитным полям, что делает процесс нанесения покрытий контролируемым, а характеристики покрытий стабильными. 7 з.п. ф-лы, 4 ил.

Изобретение относится к устройствам для нанесения покрытий в вакууме. Устройство содержит плоскую мишень, установленную на основании, первую магнитную систему, расположенную внутри корпуса с первым каналом водяного охлаждения, источник питания электрического разряда и источник ионов газа. Основание установлено на корпусе. Источник ионов газа содержит внутренний полюсный наконечник с первой стенкой, внешний полюсный наконечник со второй стенкой, кольцевой анод со вторым каналом водяного охлаждения, плиту с третьим каналом водяного охлаждения, вторую магнитную систему и высоковольтный источник питания. Первая стенка и вторая стенка расположены напротив друг друга и образуют выходную апертуру, расположенную со стороны плоской мишени, а внутренний полюсный наконечник и внешний полюсный наконечник охватывают корпус с внешней стороны и отделены от него изолятором. В результате снижается рабочее давление и повышается качество наносимых покрытий. 2 з.п. ф-лы, 4 ил.

Изобретение относится к устройствам технологического оборудования и может быть использовано в технологии производства электронных компонент

Изобретение относится к плазменному оборудованию для многослойного нанесения пленочных покрытий при изготовлении приборов электронной техники

Изобретение относится к области цветной металлургии, в частности к производству высокочистого кремния, который может быть использован при изготовлении солнечных элементов

 


Наверх