Патенты автора Камайданов Евгений Николаевич (RU)

Изобретение относится к области биологической очистки бытовых сточных вод и предназначено для использования преимущественно в жилищно-коммунальном хозяйстве малых и средних городов, на аграрно-промышленных комплексах с предприятиями - источниками концентрированных сточных вод и прилегающими селитебными территориями с населением не менее 10000 человек. Способ переработки твердых бытовых отход включает отделение их от неорганических компонентов, часть их непосредственно смешивают с частью органических отходов механобиологической очистки и подвергают гомогенизации и частичному измельчению в гидропульпаторе. Отделяют бионеразлагаемые компоненты и подвергают окончательной анаэробной переработке в метантенке с получением биогаза и биошлама, другую часть твердых бытовых отходов перед окончательной анаэробной переработкой в метантенке подвергают предварительной аэробной обработке с другой частью отходов механобиологической очистки сточных вод. Биошлам метантенка разделяют на фракции в механическом сгустителе, твердую фракцию используют для приготовления удобрений. Бионеразлагаемые компоненты отделяют непосредственно в гидропульпаторе с последующей их термохимической переработкой в газообразный энергоноситель и золу, перед окончательной анаэробной переработкой в метантенке биоразлагаемых компонентов их подвергают механическому сгущению непосредственно в гидропульпаторе с последующей анаэробной переработкой надосадочной жидкости в двухступенчатом анаэробном биореакторе с иммобилизированной микрофлорой с получением биогаза и эффлюента, биошлам перед разделением на фракции подвергают окончательной аэробной обработке. Устройство переработки твердых бытовых отход содержит гидравлически связанные средства разделения органических компонентов на крупные и мелкие фракции, измельчитель, гидропульпатор, метантенка, механический сгуститель и средства приготовления удобрений, аэробного биореактора, вход которого связан с выходом средств разделения органических компонентов и с источником отходов очистки сточных вод, гидропульпатора и метантенка. Между метантенком и механическим сгустителем предусмотрен дополнительный аэробный биореактор, дополнительно предусмотрены средства разделения органических компонентов на биоразлагаемые и бионеразлагаемые компоненты с их размещением совместно со средствами разделения органических компонентов на крупные и мелкие фракции, измельчителем в герметичном корпусе гидропульпатора. Выход по бионеразлагаемым компонентам и крупным фракциям связан с входом газогенератора, выход надосадочной жидкости связан с входом двухступенчатого анаэробного биореактора с иммобилизированной микрофлорой. Выход по эффлюентам первой и второй ступеней совместно с выходом механического сгустителя связан с установкой глубокой биологической очистки. Выход гидропульпатора и аэробных биореакторов по газу связан с окислительно-восстановительной зоной газогенератора. Использование данной группы изобретений позволяет сократить количество отдельных этапов основного цикла обрабтки исходного сырья. 2 н.з. ф-лы, 4 ил.

Изобретения относятся к сельскому хозяйству. Способ получения газообразного энергоносителя и органоминеральных удобрений из бесподстилочного навоза, согласно которому исходный навоз последовательно подвергается нагреву, предварительному сбраживанию при температуре не менее 42-43°С, механическому разделению на твердую и жидкую фракции с последующими нагревом и обработкой жидкой фракции в анаэробном биофильтре с получением эффлюента и биогаза, причем эффлюент используется в качестве теплоносителя для предварительного нагрева исходного субстрата, а твердая фракция смешивается с негашеной известью, подсушивается и используется для приготовления органоминеральных удобрений. Устройство для получения газообразного энергоносителя и органоминеральных удобрений из бесподстилочного навоза. Изобретения позволяют использовать сочетания процессов аэробной предобработки и анаэробной биофильтрации в условиях внутреннего регенеративного теплообмена между тепловыделяющей аэробной биомассой и теплопотребляющей анаэробной метаногенной иммобилизированной микрофлорой, а также получать низкопотенциальный газообразный теплоноситель, используемый для компенсации внешних теплопотерь анаэробного биофильтра, а также в качестве деаммонизирующего эффлюент агента и теплоносителя при сушке твердой фракции. 2 н.п. ф-лы, 1 ил.

Изобретение относится к переработке бесподстилочного навоза с содержанием твердой фазы 6-10% в газообразный энергоноситель - биогаз с энергосодержанием не менее 20 МДж/м3, обеззараженные стабилизированные продукты - жидкий обогащенный азотом сток - эффлюент с содержанием аммиачного азота не менее 500 мг/л, и твердую фракцию с повышенным содержанием гумусообразующих веществ (лигнина, гемицеллюлозы), азота и фосфора - биошлама. Исходный навоз подвергают аэробному автотермическому термогидролизу, анаэробной ацидофикации и анаэробной переработке в горючий биогаз, биошлам и эффлюент, причем жидкофазную переработку в горючий биогаз и эффлюент осуществляют с использованием прикрепленной метаногенной микрофлоры. Твердофазную переработку в горючий биогаз и биошлам осуществляют с использованием взвешенной метаногенной микрофлоры. Твердофазную переработку совмещают с уплотнением биошлама и контактным осветлением надосадочной жидкости. Аэробный автотермический термогидролиз и жидкофазную переработку осуществляют в условиях взаимного теплообмена с размещением зоны анаэробной ацидофикации внутри зоны жидкофазной переработки в условиях гидравлической циркуляционной связи зон аэробного автотермического термогидролиза и анаэробной ацидофикации, а также зон жидкофазной переработки и контактного осветления надосадочной жидкости. Эффлюент зоны жидкофазной переработки используют для термостабилизации зоны твердофазной переработки и предварительного нагрева навоза. Устройство состоит из аэробного биореактора, анаэробного ацидофикационного биореактора, сгустителя, жидкофазного и твердофазного анаэробного биореакторов. Жидкофазный анаэробный биореактор снабжен размещенной внутри загрузки развитой поверхностью теплообмена в виде системы оребренных труб, внутренняя полость которых гидравлически связана с рабочим пространством аэробного биореактора. Технический результат - повышение удельного выхода товарного биогаза, повышение потребительских качеств эффлюента и биошлама. 2 н.п. ф-лы, 3 ил.

Изобретение относится к сельскому хозяйству, в частности к способам получения искусственных газов и аммиачного азота из бесподстилочного навоза. Исходный навоз подвергают аэробной переработке с получением биогаза и аммонизированного эффлюента. Эффлюент подвергают механическому разделению на твердую и жидкую фракции. Твердую фракцию подвергают термохимической газификации с получением генераторного газа, который используют при анаэробной переработке для синтеза метана и в качестве теплоносителя. Разделение на фракции осуществляют после аэробной обработки с получением влажного кислородсодержащего газа, который используют при газификации твердой фракции. Анаэробной обработке подвергают жидкую фракцию в диапазоне температур 50-60°С. Смесь биогаза и генераторного газа используют для отдувки аммиака из эффлюента, пары аммиака конденсируют с получением аммиачной воды. Теплоту конденсации используют для снижения влажности твердой фракции перед термохимической газификацией. Тепловую энергию эффлюента после отдувки аммиака используют для предварительного нагрева навоза. Изобретение обеспечивает повышение эффективности процесса газификации навоза в целом, в сочетании с рекуперацией ценного удобрительного компонента - аммиачного азота. 1 ил.

Линия утилизации навоза с получением биогаза и удобрений состоит из гидравлически связанных навозоприемника, первого анаэробного биореактора с теплообменником-конденсатором теплового насоса, второго анаэробного биореактора с теплообменником, отстойника-накопителя удобрений с теплообменником-испарителем теплового насоса. Теплообменник-конденсатор и теплообменник-испаритель связаны друг с другом посредством компрессора с газомоторным приводом на биогазе с образованием термодинамического контура теплового насоса. Теплообменник-конденсатор теплового насоса выполнен в виде вертикальной трубы с полыми стенками и размещен коаксиально внутри первого анаэробного биореактора. Теплообменник-испаритель теплового насоса выполнен в виде погружного змеевика и размещен в нижней части отстойника-накопителя удобрений. В теплообменнике второго анаэробного биореактора используется тепловая энергия охлаждающей жидкости и выхлопных газов газомоторного привода компрессора теплового насоса. В навозоприемнике имеется дополнительный теплообменник-конденсатор теплового насоса. В верхней части отстойника-накопителя предусмотрен дополнительный теплообменник-испаритель теплового насоса, выполненный в виде вертикальной трубы с полыми стенками. Теплообменник второго биореактора выполнен аналогично теплообменнику-конденсатору и связан с газомоторным приводом компрессора теплового насоса посредством линии циркуляции теплоносителя с трехходовым регулирующим клапаном, тепловоспринимающий элемент которого размещен в рабочем пространстве второго биореактора. Техническим результатом является повышение устойчивости процесса анаэробной переработки навоза в нерасчетных режимах эксплуатации при сохранении высоких показателей по выходу и составу товарного биогаза и качеству эффлюента. 1 з.п. ф-лы, 1 ил.

Изобретения относятся к сельскому хозяйству. Способ получения биопродуктов и биогаза из бесподстилочного куриного помета, согласно которому исходный помет подвергают последовательно мезофильной анаэробной обработке в температурном диапазоне 32-37°С продолжительностью не более суток, термофильной анаэробной обработке в температурном диапазоне 52-57°С продолжительностью не более 6 суток с получением биогаза и эффлюента, эффлюент разделяют на жидкую фракцию с влажностью более 97% и твердую фракцию с влажностью не более 90% с получением твердых и жидких удобрений и белково-витаминных добавок, биогаз используют для получения энергии, причем жидкую фракцию подвергают анаэробной биофильтрации в рециркуляционном режиме с получением дополнительных количеств биогаза и значения БПКп жидкой фракции не более 2000 мг/л, твердую фракцию подвергают твердофазной анаэробной обработке в психрофильном или мезофильном режиме с получением отношения углерода к азоту C:N<10 и дополнительных количеств биогаза. Устройство для получения биопродуктов и энергии из бесподстилочного куриного помета состоит из последовательно соединенных мезофильного анаэробного биореактора, термофильного анаэробного биореактора, средств разделения эффлюента на жидкую и твердую фракции, а также генератора энергии, связанного с анаэробными биореакторами газопроводом. Изобретения позволяют повысить глубину переработки органического вещества исходного субстрата в сочетании с более полным использованием биоэнергетического потенциала. 2 н.п. ф-лы, 5 ил.

Группа изобретений относится к сельскому хозяйству. Способ переработки органических субстратов в биогаз, жидкие и твердые удобрения и техническую воду, согласно которому исходный субстрат последовательно подвергается усреднению, анаэробной обработке, механическому сгущению с получением твердой и жидкой фракций, с последующим использованием твердой фракции для приготовления твердых удобрений, деаммонизацией жидкой фракции путем отдувки с хемосорбцией парогазовой смеси посредством кислотных или щелочных реагентов с получением жидких удобрений и доочисткой деаммонизированной жидкой фракции, причем жидкую фракцию аэробно обработанного субстрата подвергают анаэробной обработке, доочистку деаммонизированной жидкой фракции производят в аэробном режиме, газы после доочистки деаммонизированной жидкой фракции последовательно используют для предварительной деаммонификации исходного субстрата, при этом часть парогазовой смеси используется для аммонизации твердой фракции при приготовлении твердых удобрений. Устройство для реализации способа переработки органических субстратов в биогаз, жидкие и твердые удобрения и техническую воду. Группа изобретений позволяет эффективно использовать тепловую энергию, снизить степень загрязнения окружающей среды, а также повысить рентабельность производства. 2 н.п. ф-лы, 2 ил.

Изобретение относится к сельскому хозяйству. Устройство для экологически безопасной переработки органических субстратов в биогаз и удобрения, состоящее из гидравлически связанных с линией подачи исходного субстрата первого аппарата механического разделения, анаэробного биореактора с иммобилизированной микрофлорой, снабженного выходом по биогазу и эффлюенту, анаэробного биореактора со взвешенной микрофлорой и второго аппарата механического разделения, причем выходы жидкой фракции первого и второго аппаратов механического разделения связаны со входом анаэробного биореактора с иммобилизированной микрофлорой, а выход твердой фракции первого аппарата механического разделения связан со входом анаэробного биореактора со взвешенной микрофлорой, снабженного средствами обогрева, причем дополнительно предусматривается аэробный биореактор, анаэробный биореактор с иммобилизированной микрофлорой, первый аппарат механического разделения размещены внутри корпуса аэробного биореактора, анаэробный биореактор со взвешенной микрофлорой и второй аппарат механического разделения объединены в едином корпусе. Изобретение позволяет применить стадию аэробного термофильного гидролиза исходного субстрата в сочетании с интегрированием всех основных процессов обработки субстрата в едином корпусе. 2 ил.

Изобретение относится к области природоохранной техники, в часности к сооружениям для подготовки к утилизации бесподстилочного навоза, помета на фермах, животноводческих, птицеводческих комплексах и к сооружениям для обработки осадков и других отходов механобиологической очистки хозяйственно-бытовых и близких к ним по составу производственных сточных вод. Устройство состоит из вертикального герметичного корпуса. В корпусе размещены одна под другой разделенные горизонтальной перегородкой полость с анаэробной зоной, снабженной средствами газодинамического перемешивания, и полость с аэробной зоной, снабженной средствами газодинамического перемешивания и аэрации. Рабочее пространство зон заполнено иммобилизирующей насадкой и снабжено патрубками для ввода и вывода жидкости и отвода газообразных продуктов с возможностью их рециркуляции. Иммобилизирующая насадка выполнена в виде совокупности полых вертикальных стержней, заполненных легкокипящей жидкостью. Наружная поверхность каждого из стержней, по меньшей мере в анаэробной зоне, снабжена оребрением. Изобретение обеспечивает повышение эффективности очистки (свыше 90 % по ХПК) с возможностью регулирования степени удаления загрязнений в анаэробной и аэробной зонах в зависимости от типа жидкости, энергообеспеченности производства и требований к глубине очистки. 2 ил.

Изобретения относятся к сельскому хозяйству. Способ переработки бесподстилочного навоза в удобрения, электрическую и тепловую энергию, согласно которому исходный навоз последовательно подвергают предварительной подготовке в аппарате, снабженном средствами перемешивания, анаэробной переработке в биогаз и биошлам в метантенке, оборудованном средствами стабилизации температурного режима, биошлам подвергают механическому обезвоживанию с получением жидкой и твердой фракции, твердую фракцию подвергают сушке в конвективной сушилке с использованием энергии сжигания биогаза и получением сухой фракции и влажного газа, сухую фракцию используют для приготовления удобрений, влажный газ используют для стабилизации температурного режима метантенка, жидкую фракцию подвергают гравитационному разделению в отстойнике с получением сгущенной фракции и надосадочной жидкости, сгущенную фракцию направляют в аппарат предварительной подготовки, надосадочную жидкость направляют на последующую очистку, а биогаз накапливают в газохранилище и сжигают в когенерационной установке с получением электрической и тепловой энергии. Биоэнергетический комплекс для реализации способа переработки бесподстилочного навоза в удобрения. Изобретения позволяют повысить энергетическую эффективность процесса, повысить качество удобрений. 2 н.п. ф-лы, 1 ил.

Изобретение относится к сельскохозяйственному производству. Способ включает биотехнологическую и термохимическую переработку навоза и помета. При переработке навоза и помета получают электрическую и тепловую энергию, газообразное и жидкое топливо, которые используют как при переработке навоза и помета, так и для приготовления кормов, кормовых добавок, используемых для получения животноводческой и птицеводческой продукции, органических и неорганических удобрений для выращивания кормовых растительных культур при производстве кормов. Часть растительных отходов, образующихся при выращивании кормовых растительных культур, подвергают биотехнологической и термохимической переработке. Термохимическую переработку осуществляют посредством низко- и среднетемпературной газификации с получением газа и промывных вод. Промывные воды смешивают с жидкой фракцией, образующейся при биотехнологической переработке навоза и помета, и подвергают дополнительной биотехнологической переработке совместно с частью концентрированных сточных вод, образующихся при получении птицеводческой и животноводческой продукции с получением дополнительных количеств газообразного топлива, органических и неорганических удобрений, кормовых добавок и технической воды. Такая технология позволит повысить энергоэффективность процесса получения птицеводческой и животноводческой продукции при одновременном снижении негативной нагрузки на окружающую природную среду. 1 ил.

Изобретение относится к области утилизации органических субстратов, не представляющих ценности в качестве исходного сырья для приготовления товарной продукции, в первую очередь органических удобрений. Для осуществления способа исходный субстрат подвергают последовательно анаэробной обработке с получением биогаза, аэробной обработке с получением легкоосаждающегося биошлама и кислородосодержащего газа, разделению на фракции с получением жидкой и твердой фракций с последующей термической утилизацией твердой фракции с получением зольного остатка и газообразных продуктов. Тепловую энергию биошлама используют для регулирования температурного режима анаэробной обработки после его контакта с газообразными продуктами термической утилизации. Термическую утилизацию проводят в режиме газификации с использованием кислородосодержащего газа и с получением газообразных продуктов в виде генераторного газа. Температурный режим анаэробной обработки и влажности твердой фракции регулируют тепловой энергией жидкой фракции биошлама. Жидкую фракцию биошлама затем последовательно подвергают дополнительной анаэробной обработке и стриппингу. Полученную аммиачную воду используют для приготовления органических удобрений. Способ обеспечивает повышение энергетической эффективности процесса утилизации, снижение стоимости и улучшение эксплуатационных показателей основного анаэробного процесса. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области термохимической переработки влажных органических субстратов и к области получения газообразного топлива. Установка для переработки влажных органических субстратов в газообразные энергоносители состоит из последовательно расположенных механического обезвоживающего устройства (7), газогенератора (1), мокрого скруббера (10) и энергогенерирующей установки (13). Между выходом скруббера (10) по жидкому потоку и устройством доочистки (9) расположен анаэробный биофильтр (8), выход которого по газу связан с энергогенерирующей установкой (13). Выход продуктов сгорания из энергогенерирующей установки (13) последовательно связан с сушилкой (5) и теплообменным аппаратом (17). Сушилка (5) установлена между выходом механического обезвоживающего устройства (7) по твёрдой фракции и швельшахтой (2) газогенератора (1). Теплообменный аппарат (17) установлен между аппаратом аэробного гидролиза (6) и дутьевым устройством (4) газогенератора (1). Вход по жидкому потоку анаэробного биофильтра (8) дополнительно связан с жидкостным выходом механического обезвоживающего устройства (7), перед которым размещён аппарат аэробного гидролиза (6). Выход аппарата аэробного гидролиза (6) по газу связан с топкой (3) газогенератора (1). На жидкостном входе скруббера (10) расположен многоходовой управляемый вентиль (14), который связан с жидкостным выходом механического обезвоживающего устройства (7). Управляющее устройство (15) многоходового управляемого вентиля (14) связано с выходом анаэробного биофильтра (8) по газу. Изобретение позволяет максимально полно использовать биоэнергетический потенциал промывных вод и исходного органического субстрата, а также снизить уровень техногенного загрязнения окружающей среды и повысить общий энергетический к.п.д. газогенераторных установок. 1 ил.

Изобретение относится к методам переработки различных видов твердых субстратов с содержанием органического биоразлагаемого вещества не менее 20% от общей массы отходов. Изобретение может применяться в качестве самостоятельного технологического процесса или в составе комплексных технологических линий. Исходный субстрат помещают в метантенк с возможностью постепенного перемещения внутри перфорированной трубы через жидкостную анаэробную зону метантенка с последующей переработкой растворимого, тонко- и среднедисперсного органического вещества субстратов в газообразный энергоноситель и механически обезвоженную твердую фракцию, которую подвергают термохимической газификации с получением синтез-газа и твердого остатка. Жидкую фракцию после обработки в анаэробном биореакторе с прикрепленной микрофлорой возвращают в метантенк, а твердую фракцию эффлюента метантенка используют для приготовления удобрений. Механически обезвоженную твердую фракцию перед термохимической газификацией подсушивают с использованием продуктов сгорания синтез-газа. Технический результат - повышение интенсивности процесса метаногенеза, улучшение массогабаритных показателей установки, газификация невымываемой негидролизуемой части отходов и полезное использование органического вещества эффлюента, обогащенного азотом в подвижной форме. 1 з.п. ф-лы, 1 ил.

Изобретение может быть использовано в сельском хозяйстве в составе животноводческих и растениеводческих комплексов, жилищно-коммунальном хозяйстве (городских и поселковых сооружений биологической очистки хозяйственно-бытовых сточных вод), перерабатывающих производствах. Устройство содержит последовательно связанные друг с другом по потоку органического вещества первый механический сгуститель, аэробный биореактор, вход которого связан с осадочной частью первого механического сгустителя, анаэробный биореактор и второй механический сгуститель. Устройство содержит механический смеситель для приготовления органических удобрений. Анаэробный биореактор выполнен в виде анаэробного биофильтра, второй механический сгуститель размещен между аэробным и анаэробным биореакторами, причем его осадочная часть связана с механическим смесителем, а надосадочные части первого и второго механических сгустителей связаны со входом анаэробного биофильтра. Устройство содержит первый генератор электрической энергии с приводом от двигателя внутреннего сгорания, оснащенным парогенерирующим утилизационным блоком, второй генератор электрической энергии с приводом от паропоршневой машины, теплонасосную установку и теплофикационный блок, причем выход анаэробного биореактора по жидкому потоку связан с основным испарителем теплонасосной установки, выход по биогазу - с двигателем внутреннего сгорания, а конденсатор теплонасосной установки, парогенерирующий утилизационный блок, паропоршневая машина и теплофикационный блок связаны друг с другом посредством пароконденсатного контура с образованием замкнутого термодинамического цикла. Техническим результатом изобретения является повышение глубины переработки органического вещества исходного субстрата в сочетании с более полным использованием биоэнергетического потенциала. 2 з.п. ф-лы, 1 ил.

Изобретение относится к области переработки органических субстратов влажностью 95-97% с концентрацией органического вещества не менее 20 г/л. Такими субстратами являются полужидкий и жидкий навоз, образующийся при самосплавном навозоудалении, первичный осадок и сгущенный активный ил из сооружений механобиологической очистки хозяйственно-бытовых сточных вод (на городских очистных сооружениях) и стоков после переработки сельскохозяйственной продукции. Аппарат состоит из анаэробной секции с нисходящим потоком и иммобилизирующей регулярной насадкой с размещенными в нижней части секции зонами осветления и уплотнения биомассы с перемешивающим устройством. Зона осветления гидравлически связана с входом анаэробного биофильтра. Анаэробный биофильтр размещен коаксиально внутри корпуса анаэробной секции с общей газовой частью. Иммобилизирующая регулярная насадка выполнена в виде сборки стержней с возможностью вращения. Анаэробная секция заключена коаксиально в корпус аэробной секции, выход которой имеет гидравлическую связь с входом анаэробной секции. Техническим результатом изобретения является интенсификация сопряженного аэробно-анаэробного процесса и, как следствие, повышение энергетической эффективности процесса метаногенерации и улучшение массогабаритных характеристик устройства. 1 ил.

(57) Изобретение относится к области утилизации концентрированных органических субстратов. Источниками таких субстратов могут быть предприятия агропромышленного комплекса - животноводческие и птицеводческие комплексы (бесподстилочный навоз, помет), перерабатывающие предприятия. Субстратами могут также выступать осадки локальных очистных сооружений, последрожжевая барда, избыточный активный ил, осадки городских очистных сооружений. Исходный субстрат подвергают предварительной аэробной обработке с получением гидролизованного и нагретого промежуточного субстрата и кислородосодержащих газообразных продуктов, промежуточный субстрат подвергают анаэробной обработке с получением биогаза и обработанного субстрата (эффлюента), причем эффлюент подвергают разделению на фракции. Жидкую фракцию подвергают дополнительной аэробной обработке, выделяющуюся при этом тепловую энергию используют для стабилизации температурного режима предварительной аэробной обработки, кислородосодержащие газообразные продукты вводят в аэрируемый объем жидкой фракции, а сгущенную фракцию используют для приготовления удобрений. Технический результат - повышение эффективности процесса аэробно-анаэробной обработки органических субстратов. 2 н.п.ф-лы, 1 ил.

Изобретение относится к сельскому хозяйству. Согласно предложенному способу бесподстилочный навоз подвергают анаэробной переработке в метантенке с получением биошлама и биогаза. Биошлам разделяют на твердую и жидкую фракции, твердую фракцию подвергают термохимической переработке с получением зольного остатка и теплоносителя для обогрева культивационных сооружений и метантенка. Биогаз разделяют на диоксид углерода и метан, диоксид углерода используют для интенсификации процесса получения растениеводческой продукции. Бесподстилочный навоз подвергают предварительной аэробной обработке с распадом органического вещества не более 10-15%. Образовавшийся субстрат разделяют на твердую и жидкую фракции, анаэробной переработке подвергают жидкую фракцию субстрата, твердую фракцию субстрата подвергают дополнительной аэробной обработке с распадом органического вещества более 10-15%, после чего, по крайней мере частично, используют для приготовления почвогрунта. Образовавшийся при предварительной аэробной обработке кислород, содержащий газ, смешивают с воздухом, подаваемым на дополнительную аэробную обработку. Обогащенный диоксидом углерода газ со стадии дополнительной аэробной обработки смешивают с диоксидом углерода биогаза. При реализации способа обеспечивается полное использование биоэнергетического потенциала биошлама. 1 з.п. ф-лы, 2 ил.

Предлагаемый способ относится к области утилизации концентрированных органических субстратов, таких как бесподстилочный навоз, помет, осадки и илы сооружений механо-биологической очистки хозяйственно-бытовых и близких к ним по составу производственных сточных вод. Способ переработки органических субстратов в удобрения и газообразный энергоноситель включает аэробную обработку исходного субстрата с образованием нагретого и гидролизованного субстрата и нагретых влажных кислородосодержащих газов, анаэробную обработку с образованием нагретого эффлюента и биогаза и разделение на фракции. Разделение на фракции производят после аэробной обработки. Анаэробной обработке подвергают жидкую фракцию. Нагретый эффлюент используют в качестве теплоносителя для регулирования теплового режима аэробной обработки и в качестве источника аммонийного азота для обогащения твердой фракции. Нагретые влажные кислородосодержащие газы используют для предварительного нагрева и аэрации исходного субстрата. Изобретение позволяет снизить продолжительность пребывания аэробно-подготовленного нагретого и гидролизованного субстрата на лимитирующей анаэробной стадии, снизить массогабаритные показатели оборудования, отказаться от ненадежного теплообменного оборудования и обеспечить эффективное использование элементов питания эффлюента в агротехнических целях, повышая энергоэффективность процесса. 1 ил.

Изобретение относится к области переработки концентрированных органических субстратов - бесподстилочного навоза, помета, осадков локальных очистных сооружений перерабатывающих производств, отходов механобиологической очистки городских сточных вод - в газообразный энергоноситель - биогаз и стабилизированные обеззараженные продукты - биошламы - эффлюент, которые могут быть использованы при приготовлении удобрений. Устройство для аэробно-анаэробной обработки органических субстратов состоит из гидравлически связанных аэробного биореактора 3 с газовой 15 и жидкостной частями 14, метантенка 2 с системой циркуляции теплоносителя, аппарата 4 для гравитационного сгущения эффлюента метантенка 2 с осветлительной 25 и осадочной частями 26. Осветлительная часть 25 отделена от осадочной части 26 посредством каналов, образованных, по крайней мере, двумя наклонными пластинами 27. Жидкостная часть 14 аэробного биореактора и осветлительная часть 25 аппарата для гравитационного сгущения 4 имеют общую разделительную стенку 22. Внутри осветлительной части 25 размещена центральная труба 19, в полой стенке 20 которой циркулирует теплоноситель. Пространство между наружной стенкой 23 центральной трубы 19 и разделительной стенкой 22 связано с газовой частью 15 аэробного биореактора посредством газопровода 16. Изобретение позволяет снизить материалоемкость конструкции и повысить эффективность использования первичного энергоресурса-биогаза. 1 з.п. ф-лы, 1 ил.

Изобретение относится к устройствам для обработки органических субстратов, таких как бесподстилочный навоз, осадки и илы сооружений биологической очистки хозяйственных и производственных сточных вод

МЕТАНТЕНК // 2456247
Изобретение относится к области природоохранной и энергогенерирующей техники и предназначено для переработки органических субстратов относительной влажностью 90-98%: бесподстилочного навоза, помета сельскохозяйственных животных, осадков и илов как отходов процессов механо-биологической очистки хозяйственно-бытовых и близких к ним по составу производственных сточных вод АПК

Изобретение относится к автономным источникам энергии, работающим на возобновляемых видах топлива

Изобретение относится к сельскому хозяйству и жилищно-коммунальному хозяйству

Изобретение относится к техническим средствам для обезвреживания и утилизации высококонцентрированных органических отходов (осадков, илов), возникающих при биологической очистке хозяйственно-бытовых и близких к ним по составу сточных вод

Изобретение относится к сельскохозяйственному производству и может использоваться в системах для получения органических удобрений из бесподстилочного навоза (помета) сельскохозяйственных животных (птицы)

Изобретение относится к области природоохранной техники с преимущественным использованием в сельском хозяйстве

 


Наверх