Патенты автора Михайлов Александр Николаевич (RU)

Изобретение относится к области строительства, а именно к возведению буронабивных свай в непосредственной близости от стоящих зданий и сооружений, и может быть использовано при формировании свайных фундаментов в слабых грунтах, также может быть использована для укрепления слабых грунтов одновременно струйная технология с возведением буронабивных свай. Буровая колонна для возведения буронабивной свай в грунтоцементной оболочке, состоящая из набора последовательно герметично соединенных между собой сборно-разборных полых шнеков, в которых снизу первого полого шнека размещен извлекаемый буровой инструмент, выше которого расположен извлекаемый раздаточный элемент со струеформирующими соплами для цементации, шпиндель привода буровой колонны, оснащенный системой датчиков, регистрирующих изменение силовых показателей бурения в зависимости от прочностных характеристик пробуриваемых пород, сигнал от которой поступает к блоку управления комплексом оборудования для приготовления и подачи под высоким давлением водоцементного раствора от насосного блока к раздаточному элементу со струеформирующими соплами. Раздаточный элемент установлен в посадочных гнездах второго снизу полого шнека, в котором выполнены боковые окна под струеформирующие сопла раздаточного элемента, который механически связан для извлечения бурового инструмента. По оси буровой колонны внутри полых шнеков размещен центральный трубопровод для подачи цементного раствора к раздаточному элементу, центральный трубопровод жестко закреплен сверху на раздаточном элементе для возможности извлечения его и бурового инструмента из буровой колоны, значение давления Р водоцементного раствора от насосного блока к раздаточному элементу со струеформирующими соплами определяется по приведенной зависимости. Запас времени, необходимый для обработки информации о свойствах грунтов, выявления протяженности областей пониженных механических свойств массива, формирования командного решения для корректировки режима цементации и перехода на цементацию в новом режиме, вычисленный в блоке управления комплексом оборудования, определяется по приведенной зависимости. Время на выявление протяженности областей с пониженными или повышенными механическими свойствами массива Т1 определяется по приведенной зависимости. Время формирования командного решения для корректировки режима цементации и перехода на цементацию в новом режиме Т2, зависящее от длины расположенных внутри полого шнека магистралей подвода высоконапорного водоцементного раствора от насосного блока до раздаточного элемента, определяется по приведенной зависимости. Технический результат состоит в сокращении времени строительства буронабивной сваи в грунтоцементной оболочке с повышением ее прочностных и несущих свойств в слабых грунтах. 6 ил.

Изобретение относятся к области строительства, а именно к способам закрепления грунтов оснований зданий и сооружений, и может быть использовано при формировании свайных фундаментов сооружений различного назначения в слабых водонасыщенных грунтах. Способ возведения буронабивной сваи с грунтоцементными уширениями в зоне слабых грунтов включает проходку скважины полым шнеком с буровым инструментом, оснащенным магистралями подвода высоконапорного водоцементного раствора от насосного блока к раздаточному элементу со струеформирующими соплами, который размещают внутри полого шнека, имеющего боковые окна для струеформирующих сопел раздаточного элемента, а также системой регистрации изменения механических свойств грунтов, составляющих пробуриваемый массив, с последующим формированием грунтоцементной оболочки с уширениями в зоне слабых грунтов, которые создают в соответствии с определенными в процессе бурения характеристиками грунтов, посредством подачи высоконапорного цементирующего раствора через раздаточный элемент со струеформирующими соплами. После достижения грунтоцементной оболочкой проектной глубины из пробуренной скважины извлекают раздаточный элемент и буровой инструмент, в полость шнека опускают арматурный каркас и заполняют скважину бетоном литой консистенции до устья, после чего производят постепенное поднятие полого шнека с его вывинчиванием и одновременно подают бетонную смесь в скважину с уплотнением импульсными разрядами до полного заполнения образовавшегося пространства. В соответствии с определенными в процессе бурения характеристиками грунтов и формированием грунтоцементной оболочки с уширениями в зоне слабых грунтов изготавливают арматурный каркас с боковыми вставками, содержащими арматурные стержни с шарнирами первого рода и пружинами, позволяющими арматурным стержням боковых вставок заполнять боковые уширения, а также с торцевой вставкой, содержащей приварное и упорные кольца с шарнирами первого рода и арматурные стержни, которые под воздействием веса арматурного каркаса и вдавливания заполняют торцевое уширение, после чего опускают армирующий каркас в полый шнек, который постепенно с вывинчиванием подымают, и по мере раскрытия и заполнения арматурными стержнями с шарнирами первого рода боковых и торцевой вставок уширений грунтоцементной оболочки в зоне слабых грунтов подают бетонную смесь в скважину до полного заполнения образовавшегося пространства. Технический результат состоит в обеспечении устранения технологической осадки и повышении несущей способности и качества буронабивной сваи с грунтоцементными уширениями в зоне слабых грунтов. 2 н. и 1 з.п. ф-лы, 23 ил.

Изобретение относится к области строительства, а именно к возведению буронабивных свай в непосредственной близости от стоящих зданий и сооружений, и может быть использовано при формировании свайных фундаментов в слабых грунтах, а также для укрепления слабых грунтов использованием струйной технологии одновременно с возведением буронабивных свай. Способ возведения буронабивной сваи в грунтоцементной оболочке включает проходку скважины полым шнеком с буровым инструментом, оснащенными магистралями подвода высоконапорного водоцементного раствора от насосного блока к раздаточному элементу со струеформирующими соплами и системой регистрации изменения механических свойств грунтов, составляющих пробуриваемый массив, с последующим армированием, бетонированием, уплотнением импульсными разрядами и формированием грунтоцементной оболочки посредствам подачи высоконапорного цементирующего раствора через раздаточный элемент со струеформирующими соплами. Грунтоцементную оболочку создают переменного поперечного сечения в соответствии с определенными в процессе бурения характеристиками грунтов, причем большее поперечное сечение оболочки формируют в областях пониженных механических свойств грунтов раздаточным элементом, который размещают внутри полого шнека, имеющего боковые окна для струеформирующих сопел раздаточного элемента. Размещают раздаточный элемент выше бурового инструмента на расстоянии, обеспечивающем запас времени между процессами бурения и цементации, необходимый для обработки информации о свойствах грунтов, выявления протяженности областей пониженных механических свойств массива, формирования командного решения для корректировки режима цементации и перехода на цементацию в новом режиме, величину запаса времени определяют по приведенной зависимости Т=Т1+Т2, где Т1 - время на выявление протяженности областей с пониженными или повышенными механическими свойствами массива, Т2 - время формирования командного решения для корректировки режима цементации и перехода на цементацию в новом режиме. Время на выявление протяженности областей с пониженными или повышенными механическими свойствами массива Т1 определяют по приведенной зависимости Т1=kт×h/vб, где kт - коэффициент запаса толщины слоя массива с пониженными механическими свойствами, значение задают в проектной документации на основании исходной информации о геологическом строении массива, h - толщина слоя массива с пониженными механическими свойствами, зафиксированная системой регистрации изменения механических свойств грунтов, составляющих пробуриваемый массив, м, vб - скорость бурения, м/с. Время формирования командного решения для корректировки режима цементации и перехода на цементацию в новом режиме Т2, зависящее от длины расположенных внутри полого шнека магистралей подвода высоконапорного водоцементного раствора от насосного блока до раздаточного элемента, и определяют по приведенной зависимости T2=kд(Lм+H)/vт, где kд - коэффициент запаса времени перехода на новые режимы цементации, значение kд задают в проектной документации на основании исходной информации о материале магистралей подвода высоконапорного водоцементного раствора от насосного блока до раздаточного элемента, Lм - длина магистралей от насосного блока до буровой колонны, м, Н - глубина бурения, м, vт - средняя скорость течения высоконапорного раствора в магистралях подвода высоконапорного водоцементного раствора от насосного блока до раздаточного элемента, м/с. Формирование грунтоцементной оболочки производят при текущей скорости бурения, а выполнение большего диаметра грунтоцементной оболочки осуществляют за счет увеличения давления подаваемого цементирующего раствора, значение давления которого определяют по приведенной зависимости. После достижения грунтоцементной оболочкой проектной глубины из пробуренной скважины извлекают раздаточный элемент и буровой инструмент, и в полость шнека опускают армирующий каркас и разрядник для формирования высокоэнергетических электрических импульсов для возбуждения в твердеющем материале электрических разрядов, и заполняют скважину бетоном литой консистенции до устья, после чего производят постепенное поднятие шнека (с его вывинчиванием) и одновременно подают бетонную смесь в скважину (в полость полого шнека) до полного заполнения образовавшегося пространства. После поднятия полого шнека постепенно поднимают разрядник и по мере его поднятия в ранее выявленных областях пониженных механических свойств грунта подают импульсы для возбуждения в твердеющем материале электрических разрядов. Технический результат состоит в сокращении времени строительства буронабивной сваи в грунтоцементной оболочке с повышением ее прочностных и несущих свойств в слабых грунтах. 3 табл.

Изобретение относится к машиностроению и может быть использовано при изготовлении погружных электроцентробежных насосов для добычи нефти. Способ изготовления рабочего колеса и направляющего аппарата ступени погружного многоступенчатого центробежного насоса включает ввод алюминия под поверхность расплава при температуре 1410-1480°С. Далее проводят нагрев до температуры разлива и модифицирование в этом промежутке времени сплава введением лигатур с получением следующего состава, мас.%: углерода - 3,2-3,9; кремния - 0,2-1,0; марганца - 0,5-0,8; хрома - 0,1-0,5; меди - 0,8-1,5; алюминия - 1,7-4.0; титана - 0,0-0,3; фосфора - не более 0,2; серы - не более 0,02; железо - остальное. Производят заливку расплава в литейную форму, выбивку отливки и обрубку литников отливок, термическую обработку отливок с нагревом до температуры 550-600°С с последующим охлаждением на воздухе, механическую обработку отливок колеса и аппарата, в том числе обработка пар трения с обеспечением точности и шероховатости, необходимых для поверхностей трения подшипников скольжения, низкотемпературное азотирование поверхностей полученных деталей при температуре не более 600°С на глубину 30-500 мкм и более. Изобретение направлено на повышение надежности, долговечности и межремонтного периода насоса. 3 з.п. ф-лы, 1 ил.

Группа изобретений относится к машиностроению и может быть использована в погружных многоступенчатых электроцентробежных насосах для добычи нефти. Насос содержит корпус, вал и ступени, состоящие из рабочего колеса и направляющего аппарата, выполненные литьем из чугуна следующего состава, масс.%: углерода - 3,2-3,9, кремния - 0,2-1,0, марганца - 0,5-0,8, хрома - 0,1-0,5, меди - 0,8-1,5, алюминия - 1,7-4,0, титана - не более 0,3, фосфора - не более 0,2, серы - не более 0,02, железо - остальное. Поверхности рабочего колеса и направляющего аппарата содержат азотированный низкотемпературным азотированием слой. Колеса установлены на валу посредством ступицы с возможностью вращения и содержат нижнюю осевую опору колеса с опорной поверхностью, лопасти и верхнюю осевую опору с опорной поверхностью. Направляющие аппараты установлены в корпусе посредством цилиндрической обоймы, содержат опорный бурт с опорной поверхностью, цилиндрическую обойму, лопатки, нижнюю опорную поверхность. Опорные поверхности нижней осевой опоры колеса и опорного бурта направляющего аппарата содержат твердосплавные покрытия, которыми они контактируют между собой, образуя пару трения. Изобретения направлены на повышение износостойкости и коррозионной стойкости насоса. 2 н. и 7 з.п. ф-лы, 4 ил.

Изобретение относится к машиностроению и может быть использовано, например, в установках погружных электроцентробежных насосов для добычи нефти. Погружной многоступенчатый центробежный насос содержит корпус (1), вал (2), ступени (3), состоящие из рабочего колеса (4) и направляющего аппарата (5), выполненные литьем из чугуна следующего состава, масс. %: углерода - 3,2-3,9; кремния - 0,2-1,0; марганца - 0,5-0,8; хрома - 0,1-0,5; меди - 0,8-1,5; алюминия - 1,7-4.0; титана - 0,0-0,3; фосфора - не более 0,2; серы - не более 0,02; железо - остальное. Поверхности колеса (4) и аппарата (5) содержат азотированный низкотемпературным азотированием слой. Колеса (4) установлены на валу (3) и содержат нижнюю осевую опору колеса с опорной поверхностью, лопасти, ступицу с наружной радиальной опорной поверхностью, верхнюю осевую опору с опорной поверхностью. Аппараты (5) установлены в корпусе (1) посредством цилиндрической обоймы, содержат опорный бурт с опорной поверхностью, ступицу с внутренней радиальной опорной поверхностью, цилиндрическую обойму, лопатки, нижнюю опорную поверхность. Опорные поверхности нижней осевой опоры колеса (4) и опорного бурта аппарата (5) содержат твердосплавное покрытие. Твердосплавные покрытия опорных поверхностей нижней осевой опоры колеса (4) и опорного бурта аппарата (5) контактируют, образуя пару трения. Наружная и внутренняя радиальные опорные поверхности ступиц соответственно колеса (4) и аппарата (5) контактируют азотированными слоями, образуя радиальную опору вала (3). Изобретение направлено на повышение надежности, долговечности и межремонтного периода насоса и снижение его стоимости. 5 з.п. ф-лы, 4 ил.

Изобретение относится к машиностроению и может быть использовано в способах изготовления рабочих колес и направляющих аппаратов ступеней погружных многоступенчатых электроцентробежных насосов для добычи нефти. Способ изготовления включает ввод алюминия под поверхность расплава при температуре 1410-1480°C, последующий нагрев до температуры разлива и модифицирование в этом промежутке времени сплава введением лигатур с получением следующего состава, мас.%: углерода - 3,2-3,9, кремния - 0,2-1,0, марганца - 0,5-0,8, хрома - 0,1-0,5, меди - 0,8-1,5, алюминия - 1,7-4.0, фосфора - не более 0,2, серы - не более 0,02, железо - остальное. Способ включает также заливку расплава в литейную форму, выбивку отливки и обрубку литников отливок, термическую обработку отливок с нагревом до температуры 550-600°C с последующим охлаждением на воздухе, механическую обработку отливок рабочего колеса и направляющего аппарата, в том числе обработку осевых и радиальных пар трения с обеспечением точности и шероховатости, необходимых для поверхностей трения подшипников скольжения, низкотемпературное азотирование поверхностей полученных деталей при температуре не более 600°C на глубину 30-500 мкм. Изобретение направлено на повышение надежности, долговечности насоса, снижение его себестоимости и увеличение межремонтного периода. 3 з.п. ф-лы, 1 ил.

Изобретение относится к машиностроению и может быть использовано, например, в установках погружных электроцентробежных насосов для добычи нефти. Опорный узел содержит основание со встроенным радиальным подшипником, корпус, головку со встроенным радиальным подшипником, последовательно соединенные между собой, вал, расположенные вдоль оси вала опорные секции, каждая из которых содержит пяту, установленную на валу с возможностью вращения совместно с валом и восприятия осевой силы со стороны вала и без возможности вращения относительно него, подпятник, выполненный с возможностью восприятия осевой силы со стороны пяты и закрепленный в корпусе. Опорная поверхность пяты и опорная поверхность подпятника содержат твердосплавное покрытие, в частности, из карбида вольфрама со связкой из кобальта или карбида вольфрама со связкой из никеля, при этом опорная поверхность пяты твердосплавным покрытием контактирует с твердосплавным покрытием опорной поверхности подпятника, образуя пару трения. Опорная поверхность пяты и опорная поверхность подпятника содержат твердосплавное покрытие толщиной 0,1 мм - 1,0 мм и более каждая. Пята опорной секции со стороны, противоположной опорной поверхности с твердосплавным покрытием, содержит закрепленный на валу упругий элемент. Подпятник выполнен в виде корпуса с опорной поверхностью, контактирующей с пятой образованием пары трения, и сопрягаемого с ним основания, при этом поверхность корпуса подпятника, противоположная опорной поверхности, выполнена сферической или торовой, а сопрягаемая с ней поверхность основания подпятника выполнена конической или сферической. Технический результат: увеличение грузоподъемности опорного узла, повышение надежности его работы, увеличение межремонтного периода и долговечности его работы путем создания конструкции опорного узла работоспособной при повышенных осевых нагрузках, частотах вращения вала и температуре окружающей рабочей среды. 9 з.п. ф-лы, 6 ил.

Группа изобретений относится к машиностроению и может быть использована в установках погружных электроцентробежных насосов для добычи нефти. Рабочее колесо и направляющий аппарат ступени погружного многоступенчатого центробежного насоса выполнены литьем из чугуна следующего состава, масс.%: углерода - 3,2-3,9; кремния - 0,2-1,0; марганца - 0,5-0,8; хрома - 0,1-0,5; меди - 0,8-1,5; алюминия - 1,7-4,0; титана - 0,0-0,2; фосфора - не более 0,2; серы - не более 0,02; железо - остальное, а поверхности рабочего колеса и направляющего аппарата содержат азотированный низкотемпературным азотированием слой толщиной от 50 мкм до 300 мкм. Группа изобретений направлена на повышение надежности насоса, снижение его себестоимости и увеличение межремонтного периода. 2 н. и 1 з.п. ф-лы, 1 ил., 1 табл.

Изобретение относится к машиностроению и может быть использовано в погружных центробежных насосах для добычи пластовой жидкости из скважин. Модульная секция погружного центробежного насоса содержит основание и головку со встроенными радиальными подшипниками, переходники с промежуточными подшипниками, фильтроэлементы. Также секция содержит перфорированные отверстиями трубчатые элементы, расположенные между основанием и нижним переходником, между переходниками, между верхним переходником и головкой и соединенные с ними посредством резьбы. Секция имеет вал, установленный во встроенных радиальных подшипниках головки и основания и в промежуточных подшипниках с возможностью вращения. Фильтроэлементы расположены поверх переходников и трубчатых элементов, содержат по краям распорные кольца. Трубчатые элементы и переходники имеют возможность контакта наружными поверхностями с внутренними элементами фильтроэлементов. Изобретение направлено на повышение надежности, долговечности, снижения стоимости секции, увеличение межремонтного периода секции и всего насоса в целом. 4 з.п. ф-лы, 3 ил.

Группа изобретений может быть использована в погружных электроцентробежных насосах для добычи нефти, в скважинных фильтрах, фильтрах для очистки воды и в других фильтрующих оборудованиях. Фильтрующий элемент содержит силовой каркас (1) из стержней (2) и скрепленную с ним сваркой (3) фильтрующую оболочку (4). Оболочка (4) образована расположенными с определенным шагом профилированными проволоками (5) с образованием для фильтрации щелей (6) между соседними проволоками (5). Поверхность проволоки (5) фильтрующей оболочки (4) со стороны (8) поступления фильтруемого вещества содержит фильтрующие каналы (9). Каналы (9) соединяют щели (6), расположенные между соседними проволоками (5), и направлены от одной щели до другой щели. Изобретения направлены на увеличение пропускной способности фильтрующего элемента, снижение его габаритов и материалоемкости. 2 н. и 2 з. п. ф-лы, 7 ил.
Изобретение относится к области медицины, в частности к области онкологии и психотерапии, и может быть использовано для лечения онкологических больных, а также для профилактики онкологических заболеваний. Комплексное лечение проводят в стационаре в условиях умеренного климата на фоне полной независимости больного от социальной сети с использованием экологически чистых продуктов питания и воды, и включает пять блоков. Диагностический блок содержит сбор и анализ анамнеза, выявление наиболее сильного раздражителя психического статуса больного, имевшего место в жизни больного до заболевания, а также выявление личностных особенностей больного. Установочный блок включает создание доверительной атмосферы путем эмпатического выслушивания, сопереживания, участия в эмоциональной сфере, осмысления с новых позиций событий, связанных с раздражителем. Информационный блок включает повышение мотивации на самосовершенствование и интереса к психотерапевтическим занятиям. Коррекционный блок содержит проведение методов музыкотерапии, арт-терапии, игротерапии, физических упражнений. В рамках эмоционально-стрессовой и краткосрочной рациональной психотерапии снимают остроту переживаний, активизируют больного, создают условия для перевода негативных эмоций из бессознательной сферы в сознательную, развивают и формируют у больного ролевую позицию в достижении успехов в выздоровлении. Проводят упражнения по освоению локомоторных действий, повышают мотивацию на обучение и личностное развитие, при этом осуществляют мышечную релаксацию, а затем осуществляют обучение приемам биологически обратной связи и аутотренингу с проговариванием формул самовнушения. Оценочный блок включает определение изменений в эмоциональном, психологическом статусе, степени освоения и приобретения навыков эмоционального реагирования, нервно-психической устойчивости. При этом осуществляют систематический врачебный контроль состояния больного. Психотерапию осуществляет психотерапевт и работник среднего медицинского персонала индивидуально. Способ позволяет повысить качество жизни и продлить жизнь онкологических больных за счет соблюдения и проведения комплексных противоопухолевых мероприятий. 1 табл.

Изобретение относится к машиностроению и может быть использовано, например, в установках погружных электроцентробежных насосов для добычи нефти. Упорный подшипник содержит пяту, установленную на валу с возможностью вращения совместно с валом и восприятия осевой силы со стороны вала и без возможности вращения относительно него, подпятник, содержащий самоустанавливающиеся сегменты и выполненный с возможностью восприятия осевой силы со стороны пяты. Опорная поверхность пяты и опорная поверхность подпятника, состоящая из опорных поверхностей сегментов, содержат твердосплавное покрытие, в частности, из карбида вольфрама со связкой из кобальта или карбида вольфрама со связкой из никеля, при этом опорная поверхность пяты твердосплавным покрытием контактирует с твердосплавным покрытием опорной поверхности подпятника, образованной сегментами, образуя пару трения. Опорная поверхность пяты и опорная поверхность подпятника, образованная сегментами, содержат твердосплавное покрытие толщиной 0,1 мм - 1,0 мм и более каждая. Сегменты содержат гидродинамические уклоны. Технический результат: повышение надежности работы упорного подшипника, увеличение межремонтного периода и долговечности работы упорного подшипника путем создания конструкции упорного подшипника работоспособной при повышенных осевых нагрузках, частотах вращения вала и температуре окружающей рабочей среды. 2 з.п. ф-лы, 3 ил.

Изобретение относится к технике электрических измерений и предназначено для определения качества компаундирования обмоток электрических машин на этапах испытания изоляции обмоток при изготовлении и эксплуатации, в частности обмоток статора маслонаполненных погружных асинхронных электродвигателей. Сущность: на объект измерений подают постоянное напряжение U и измеряют сопротивление R(t) объекта в течение времени, достаточного для достижения величины сопротивления практически установившегося значения. Затем определяют значения переходного тока i(t)=U/R(t). По кривой тока определяют диагностический признак оценки качества компаундирования обмотки в виде произведения экспериментальных значений основных характеристик компаунда (εa·ρv)экcп - абсолютной диэлектрической проницаемости и удельного объемного сопротивления соответственно, затем определяют критерий качества компаундирования Кk путем сравнения экспериментальных характеристик компаунда с его паспортными данными по формуле: . Технический результат: повышение объективности оценки качества компаундирования обмоток. 4 ил., 4 табл.

Изобретение относится к области контроля движения городского наземного транспорта, мусоровозов, обеспечивающих вывоз бытового и промышленного мусора на специальные свалки или в места их переработки, инкассаторских машин, перевозящих денежные средства из банка различным организациям и из торговых организаций в банк, специально оборудованных машин для перевозки музейных ценностей, боеприпасов, взрывчатых веществ и др

Изобретение относится к автоматизированному тестированию, в частности к тестированию цифроаналоговых, аналого-цифровых, цифровых и аналоговых изделий радиоэлектронной аппаратуры (РЭА)

Изобретение относится к технике предотвращения несанкционированного использования транспортных средств с применением радиоканалов

Изобретение относится к области медицинской техники

Изобретение относится к противопожарной технике, в частности к автоматическим устройствам сигнализации о пожарной обстановке и управления противопожарным оборудованием, и может быть использовано для противопожарной защиты различных объектов с одновременной передачей сигналов тревоги на удаленную станцию

Изобретение относится к области приборостроения, в частности к системам и устройствам формирования измерительной и управляющей информации по первичным параметрам, определяющим расход природного газа, и контроля его утечек в многоквартирных домах

Изобретение относится к средствам контроля атмосферы и предназначено для мониторинга окружающей среды, в частности для автоматического непрерывного контроля концентрации горючих газов в жилых, коммунальных и производственных помещениях

 


Наверх