Патенты автора Сиденко Владимир Владимирович (RU)

Изобретение относится к области авиации, точнее к воздушно-реактивным двигателям с форсажной камерой. Стабилизатор пламени форсажной камеры воздушно-реактивного двигателя содержит консольные радиальные элементы и узел подвеса. На каждом консольном радиальном элементе стабилизатора размещен по меньшей мере один контейнер, частично заполненный металлом или сплавом с температурой плавления менее 350°С и плотностью более 7000 кг/м3. Консольные радиальные элементы стабилизатора выполнены с тангенциальными ответвлениями. Контейнеры размещены на концах тангенциальных ответвлений консольных радиальных элементов стабилизатора. Контейнеры выполнены осесимметричной формы. Внутри контейнеров выполнена одна или несколько поперечных перегородок с одним или несколькими отверстиями в перегородках. Свободная часть контейнера заполнена инертным газом. Изобретение обеспечивает повышение колебательной устойчивости стабилизатора пламени. 5 з.п. ф-лы, 6 ил.

Изобретение относится к области авиации, точнее к газотурбинным двигателям (ГТД) с адаптивной форсажной камерой (АФК). Адаптивная форсажная камера ГТД содержит корпус с шарнирно закрепленными на нем поворотными и фиксирующимися в радиальном направлении стабилизаторами пламени, снабженными, по меньшей мере, одной парой боковых ответвлений. АФК снабжена кольцевым тепловым экраном, размещенным на корпусе за местом крепления стабилизаторов к корпусу адаптивной форсажной камеры, на внутренней поверхности теплового экрана симметрично оси стабилизатора установлены парные обтекатели в количестве, равном числу стабилизаторов, парные обтекатели установлены таким образом, чтобы в нерабочем положении стабилизаторов упомянутые обтекатели были расположены перед первыми по потоку боковыми ответвлениями соответствующих стабилизаторов, при этом каждый обтекатель выполнен уголковым с передней и задней стенками. Передняя стенка образует с ближайшим боковым ответвлением стабилизатора аэродинамический профиль в нерабочем положении стабилизатора, а задняя стенка обтекателя выполнена под отрицательным углом к оси форсажной камеры. На верхней части каждого обтекателя сформирована полка, направленная в сторону боковых ответвлений соответствующего стабилизатора в нерабочем положении. На тепловом экране адаптивной форсажной камеры сформирован кольцевой наплыв со стороны набегающего потока. Изобретение обеспечивает снижение газодинамических потерь в газовом тракте адаптивной форсажной камеры на бесфорсажных режимах работы ГТД, снижение радиолокационной заметности на форсажном режиме, а также уменьшение размеров и массы поворотных стабилизаторов пламени. 2 з.п. ф-лы, 3 ил.

Изобретение относится к области авиации, точнее, к газотурбинным двигателям с адаптивной форсажной камерой (АФК). Поворотный стабилизатор пламени адаптивной форсажной камеры двухконтурного газотурбинного двигателя содержит корпус с каналом подвода топливовоздушной смеси и перфорацией в задней по потоку стенке, шарнирный узел подвеса к корпусу форсажной камеры, выполненный в корневой части корпуса, окно для входа топливовоздушной смеси. Окно для входа топливовоздушной смеси размещено в области корневой части корпуса стабилизатора, при этом канал подвода топливовоздушной смеси за упомянутым окном выполнен симметрично раздваивающимся на боковые каналы, сходящиеся в концевой части. Оси боковых каналов в центральной части расположены радиально для стабилизатора, зафиксированного в рабочем положении, стабилизатор снабжен рычагом в области корневой части корпуса, шарнирно сообщенным с механизмом привода, при этом на корпусе форсажной камеры перед каждым стабилизатором закреплена форсунка, выходом направленная в область соответствующего окна для входа топливовоздушной смеси стабилизатора, зафиксированного в рабочем положении. В концевой части стабилизатора выполнено по меньшей мере одно отверстие увеличенного по сравнению с перфорацией задней стенки проходного сечения. Изобретение обеспечивает снижение массы узлов крепления и приводов, а также снижение газодинамических потерь в газовом тракте и заметности в радиолокационных и инфракрасных диапазонах на бесфорсажном режиме. 1 з.п. ф-лы, 5 ил.

Изобретение относится к области авиационных систем аэрозольной защиты, в частности к распыливанию жидкостей с помощью форсунок, которые используются для создания аэрозольного защитного шлейфа, снижающего силу инфракрасного излучения сопла двигателя самолета. Газожидкостная форсунка содержит сужающееся сопло с упругими стенками, внутренняя поверхность которых снабжена турбулизаторами, и магистрали подачи жидкости и газа. Для распыления жидкости с порошкообразным наполнителем сужающееся сопло выполнено щелевым и сообщено только с магистралью подачи жидкости. По периферии щелевого сопла размещено сопло, сообщенное с магистралью подачи газа, на внутренних стенках которого выполнены упоры. Такое выполнение устройства позволяет уменьшить средний размер капель распыливаемой жидкости и увеличить степень ее монодисперсности. Техническим результатом изобретения является то, что степень надежности аэрозольного защитного экрана повышается, а малый размер частиц аэрозоля способствует более эффективному экранированию ИК излучения от двигателя. 1 з.п. ф-лы, 4 ил.

Изобретение относится к области специальных испытаний авиационных газотурбинных двигателей, в частности, к устройствам для проведения наземных испытаний двигателя в составе летательного аппарата для измерения силы инфракрасного излучения в атмосферу от работающего двигателя

Изобретение относится к области авиации, а именно к защите летательного аппарата (ЛА) от ракет с головкой самонаведения (ГСН)

 


Наверх