Патенты автора Шайда Анатолий Николаевич (RU)

Изобретение относится к области космических телескопов (КТ) и может быть использовано при создании различных сетчатых конструкций, к которым предъявляются высокие требования по минимальной массе, прочности, жесткости и стабильности геометрических размеров от действия температур. Заявлен сетчатый композитный корпус, который состоит из кольцевых и спиральных ребер, соединенных между собой в узлах пересечения, при этом кольцевые ребра равномерно распределены по высоте сетчатого корпуса КТ и расположены симметрично относительно точек пересечения спиральных ребер. Причем этом кольцевые ребра выполнены из материала с большим температурным коэффициентом линейного расширения. Технический результат - обеспечение стабильности размера сетчатого композитного корпуса КТ по высоте при действии эксплуатационных температур с целью сохранения его фокусировки при минимальной массе и максимальной прочности и жесткости. 4 ил.

Изобретение относится к области космических телескопов (КТ) и может быть использовано для различных ферменных и корпусных конструкций, к которым предъявляются высокие требования по геометрической стабильности размеров от действия температур. Задачей настоящего изобретения является устранение указанных недостатков, то есть снижение веса, упрощение технологии изготовления, уменьшение стоимости изготовления с обеспечением стабильности продольных и поперечных линейных размеров фермы силовой КТ в неравномерном поле температур без увеличения дефокусировки КТ. Задача решается тем, что ферма силовая КТ состоит из продольных, поперечных и диагональных цилиндрических размеростабильных при действии температур стержней, соединенных между собой в узлах пересечения, при этом продольные, поперечные и диагональные стержни выполнены составными, соединенными между собой торовой эллиптической оболочкой по большей оси, при этом торовая эллиптическая оболочка заполнена термометрической жидкостью, причем геометрические размеры каждого из составных цилиндрических стержней, торовой эллиптической оболочки, характеристики применяемых материалов и физические свойства термометрической жидкости связаны соотношением: L = η 4,26 ⋅ b ( β − 3 α 1 ) ( 0,06 a 4 + R 1 2 ⋅ δ 1 2 ) α 2 ( 1 − μ 2 ) R 1 2 ⋅ δ 1 2 где L - суммарная длина любого из составных стержней; b, a - малая и большая полуоси сечения торовой эллиптической оболочки; R1 - радиус срединной поверхности торовой эллиптической оболочки; δ1 - толщина торовой эллиптической оболочки; α1, α2 - коэффициенты линейного расширения материала торовой эллиптической оболочки и стержня соответственно; β - коэффициент объемного расширения термометрической жидкости; µ - коэффициент Пуассона материала торовой эллиптической оболочки; η - коэффициент, учитывающий упругость торовой оболочки в местах ее соединения с цилиндрическими стержнями. 5 ил.

Изобретение относится к высокоточному бортовому оборудованию космических аппаратов, в частности к космическим телескопам

Изобретение относится к области оптического приборостроения и может быть использовано при создании различных ферменных и рамных конструкций, к которым предъявляются высокие требования по жесткости и геометрической стабильности размеров от действия температур

 


Наверх