Патенты автора Маркелов Виталий Анатольевич (RU)

Изобретение относится к области электротехники, в частности к энергоустановкам на основе твердооксидных топливных элементов для совместной выработки электроэнергии и теплоты, использующим углеводородное топливо и предназначенным для локальных потребителей, а также к модулям и батареям на основе топливных элементов, применяемых в автономных и резервных энергоустановках. Энергоустановка на основе твердооксидных топливных элементов содержит подсистему подготовки и переработки топлива, подсистему выработки электроэнергии с батареей топливных элементов, подсистемы воздухо- и водоснабжения, подсистему нейтрализации выхлопных газов, при этом подсистема выработки электроэнергии, состоящая из унифицированных модулей, содержащих стек твердооксидных топливных элементов, теплообменник-рекуператор анодного газа, теплообменник-рекуператор катодного газа, связана с дополнительной подсистемой стартового разогрева посредством линии, подводящей продукты сгорания, которые оставляют избыточное тепло и отводятся в подсистему нейтрализации. Технический результат предлагаемого изобретения заключается в снижении затрат электроэнергии на этапе запуска энергоустановки при повышении надежности и упрощении технического обслуживания и ремонта установки. 6 з.п. ф-лы, 2 ил.

Изобретение относится к области электротехники, в частности к энергоустановкам для совместной выработки электроэнергии и теплоты, использующим углеводородное топливо и предназначенным для локальных потребителей. Установка содержит подсистему автотермической переработки топлива с нейтрализацией оксида углерода, подсистему выработки электроэнергии с контуром термостабилизации и батареей топливных элементов, подсистему воздухоснабжения, подсистему водоснабжения с емкостью для регенерированной воды, подсистему нейтрализации выхлопных газов и средства подготовки к запуску. Узлы смешивания, подогрева и реформинга реагентов в топливном процессоре выполнены в виде раздельных независимых блоков, контур термостабилизации выполнен изолированным от системы регенерации воды, увлажнитель воздуха включен в поток выходного воздушного потока, а подсистема подготовки к пуску снабжена дополнительными каналами подведения топлива и воздуха к подсистеме утилизации выхлопных газов, коммутируемыми трехходовыми клапанами. Установка оснащена системой автоматического управления. Повышение экономичности расхода топлива и надежности энергоустановки за счет повышения автономности подсистем и минимизации перекрестных связей между узлами является техническим результатом изобретения. 2 ил.

Изобретение относится к области защиты подземных металлических сооружений от коррозии и может быть использовано для обеспечения контроля поляризационного потенциала в установках катодной защиты подземных металлических сооружений, в частности магистральных трубопроводов. Техническим результатом заявленного изобретения является повышение точности измерения потенциала поляризации за счет более полного исключения влияния омической составляющей, флуктуации и спада потенциала за время задержки путем повторения второго цикла измерений с задержкой по времени, а также повышение производительности за счет снижения продолжительности измерений путем выбора оптимального режима измерений. Технический результат достигается благодаря тому, что способ измерения поляризационного потенциала подземного металлического сооружения содержит следующие операции: подключают вспомогательный электрод к подземному металлическому сооружению и входу вольтметра, осуществляют первый цикл измерений поляризационного потенциала через равные промежутки времени, по результатам которого проводят оценку флуктуации результатов измерения от времени, определяют минимальную частоту спектра флуктуации, выбирают время задержки, равное длительности периода минимальной частоты спектра флуктуации, отключают вспомогательный электрод от подземного металлического сооружения и по истечении времени, равного времени задержки, проводят второй цикл измерений поляризационного потенциала через промежутки времени, длительность которых составляет не менее чем время задержки, а значение поляризационного потенциала определяют путем экстраполяции результатов измерений второго цикла. 4 з.п. ф-лы, 4 ил., 2 табл.

Использование: для неразрушающего рентгеновского контроля трубопроводов. Сущность: заключается в том, что выполняют вращение системы позиционирования и перемещения вокруг трубопровода, его просвечивание с помощью установленных на диаметрально-противоположных сторонах системы позиционирования и перемещения рентгеновского источника излучения и приемника излучения, при этом рентгеновский источник излучения устанавливают под углом не более 15 градусов относительно поверхности трубопровода, и при обнаружении дефекта осуществляют изменение угла поворота приемника излучения, относительно поверхности трубопровода, производят повторное просвечивание трубопровода до получения объемного изображения дефекта, и по результатам просвечиваний устанавливают вид, форму и глубину залегания дефекта. Технический результат: повышение качества изображения исследуемого трубопровода, достоверности и точности его контроля. 2 н. и 8 з.п. ф-лы, 2 ил.

Изобретение относится к области радиационной очистки промышленных и бытовых сточных вод, в том числе их обеззараживания и очистки от неорганических и органических соединений, таких как фенолы, нефтепродукты, поверхностно-активные вещества (ПАВ) и др., путем воздействия импульсного электронного пучка

Изобретение относится к системе и способу обучения и может быть использовано для групповой и/или индивидуальной подготовки и повышения квалификации персонала, эксплуатирующего и обслуживающего сложное техническое оборудование, например основных и вспомогательных объектов магистральных газопроводов (МГ)

Изобретение относится к способам ремонта труб под водой специальными приспособлениями

 


Наверх