Патенты автора Михаленко Вячеслав Александрович (RU)

Изобретение относится к области газотурбинного двигателестроения. Изобретение позволяет повысить надежность и ресурс работы, увеличить продолжительность жизненного цикла газотурбинной установки. Газотурбинная установка содержит газотурбинный двигатель и газодинамически связанную с ним силовую осевую турбину, роторы которых механически не связаны друг с другом. На статоре силовой турбины напротив полотна диска первой и последней ступеней силовой турбины образованы кольцевые полости, отделенные от проточной части силовой турбины подвижными уплотнениями. Кольцевая воздушная полость на статоре силовой турбины за последней ступенью пневматически сообщена с проточной частью одной из ступеней компрессора газотурбинного двигателя по меньшей мере одним трубопроводом с проточным краном на нем. На стенке каждой кольцевой полости статора силовой турбины установлен приемник давления среды в этой полости, соединенный с датчиком давления, а проточный кран снабжен электроприводом. Датчики давления воздуха в кольцевой воздушной полости и электропривод проточного крана связаны с системой управления установки. При сообщении кольцевой воздушной полости с проточной частью одной из ступеней компрессора газотурбинного двигателя двумя и более трубопроводами их выходные отверстия в кольцевую воздушную полость равноудалены друг от друга и от оси силовой осевой турбины. 2 з.п. ф-лы, 3 ил.

Изобретение относится к области эксплуатации газотурбинных двигателей и используется для оценки их остаточного ресурса. Способ эксплуатации двигателя по его техническому состоянию включает определение фактической наработки двигателя, сравнение ее с допустимыми значениями и определение остаточного ресурса двигателя. При эксплуатации газотурбинного двигателя фиксируют рабочий диапазон двигателя по температуре газа за турбиной и разбивают его на не менее чем два поддиапазона по значению температуры газа за турбиной при номинальном значении мощности, в каждом из которых при граничных значениях температуры газа и соответствующих этим значениям тепловым и газодинамическим нагрузкам на деталь при заданном значении ресурса на основе характеристик материала детали определяют коэффициенты запаса статической прочности Kmi с учетом предела ползучести материала, выбирают наиболее нагруженную деталь с минимальным значением Kmi, для каждого поддиапазона определяют среднее значение коэффициента Kmi ср., в первом поддиапазоне от значения температуры газа за турбиной при номинальном значении мощности; среднее значение коэффициентов запаса принимают за базовое значение Кmi ср. баз., затем определяют для каждого поддиапазона отношения bi=Km ср. баз./ Kmi ср., а интервал времени Тэ, в течение которого сохраняется работоспособное состояние двигателя, определяют по формуле: Тэ=Σbi* τi, где τi - фактическая наработка двигателя при работе в каждом поддиапазоне; bi - коэффициент пересчета фактической наработки к более нагруженным режимам. Предложенный способ позволяет увеличить ресурс и продолжительность жизненного цикла двигателя за счет учета реальной нагрузки на его детали в ходе эксплуатации. 3 табл.

Изобретение относится к области защиты подземных металлических сооружений от коррозии и может быть использовано для обеспечения контроля поляризационного потенциала в установках катодной защиты подземных металлических сооружений, в частности магистральных трубопроводов. Техническим результатом заявленного изобретения является повышение точности измерения потенциала поляризации за счет более полного исключения влияния омической составляющей, флуктуации и спада потенциала за время задержки путем повторения второго цикла измерений с задержкой по времени, а также повышение производительности за счет снижения продолжительности измерений путем выбора оптимального режима измерений. Технический результат достигается благодаря тому, что способ измерения поляризационного потенциала подземного металлического сооружения содержит следующие операции: подключают вспомогательный электрод к подземному металлическому сооружению и входу вольтметра, осуществляют первый цикл измерений поляризационного потенциала через равные промежутки времени, по результатам которого проводят оценку флуктуации результатов измерения от времени, определяют минимальную частоту спектра флуктуации, выбирают время задержки, равное длительности периода минимальной частоты спектра флуктуации, отключают вспомогательный электрод от подземного металлического сооружения и по истечении времени, равного времени задержки, проводят второй цикл измерений поляризационного потенциала через промежутки времени, длительность которых составляет не менее чем время задержки, а значение поляризационного потенциала определяют путем экстраполяции результатов измерений второго цикла. 4 з.п. ф-лы, 4 ил., 2 табл.

Использование: для неразрушающего рентгеновского контроля трубопроводов. Сущность: заключается в том, что выполняют вращение системы позиционирования и перемещения вокруг трубопровода, его просвечивание с помощью установленных на диаметрально-противоположных сторонах системы позиционирования и перемещения рентгеновского источника излучения и приемника излучения, при этом рентгеновский источник излучения устанавливают под углом не более 15 градусов относительно поверхности трубопровода, и при обнаружении дефекта осуществляют изменение угла поворота приемника излучения, относительно поверхности трубопровода, производят повторное просвечивание трубопровода до получения объемного изображения дефекта, и по результатам просвечиваний устанавливают вид, форму и глубину залегания дефекта. Технический результат: повышение качества изображения исследуемого трубопровода, достоверности и точности его контроля. 2 н. и 8 з.п. ф-лы, 2 ил.

Изобретение относится к области радиационной очистки промышленных и бытовых сточных вод, в том числе их обеззараживания и очистки от неорганических и органических соединений, таких как фенолы, нефтепродукты, поверхностно-активные вещества (ПАВ) и др., путем воздействия импульсного электронного пучка

Изобретение относится к системам автоматизации контроля электрохимической защиты стальных подземных коммуникаций, в т.ч

Изобретение относится к системе и способу обучения и может быть использовано для групповой и/или индивидуальной подготовки и повышения квалификации персонала, эксплуатирующего и обслуживающего сложное техническое оборудование, например основных и вспомогательных объектов магистральных газопроводов (МГ)

Изобретение относится к способам ремонта труб под водой специальными приспособлениями

 


Наверх