Патенты автора Мостовщиков Андрей Владимирович (RU)

Изобретение относится к области очистки нефти. Описан способ очистки нефти от гетероатомных компонентов, включающий использование сорбента в виде смеси порошков оксидов NiO:CuO:CoO:Li2O в соотношении 1,0:2,0:1,0:(0,5-0,7) массовых частей, которую перемешивают с нефтью в массовом соотношении 1:5 при атмосферном давлении, полученную смесь сорбента с нефтью подвергают воздействию ультразвука интенсивностью 0,15 Вт/м2 с частотой 22 кГц при времени обработки не более 10 мин, затем фильтруют, остатки нефти с сорбента смывают смесью растворителей гексан-бензол-этанол, с последующей его отгонкой при атмосферном давлении, обработанную нефть направляют на переработку. Технический результат - уменьшение содержания в нефти гетероатомных компонентов на 8,58-9,1%, снижение кинематической вязкости нефти. 1 з.п. ф-лы, 2 ил., 1 табл., 1 пр.

Использование: для исследования процесса горения порошков металлов или их смесей. Сущность изобретения заключается в том, что осуществляют одновременное инициирование процесса горения в предварительно спрессованном порошке с помощью сфокусированного излучения инициирующего лазера и фиксацию момента начала воздействия инициирующего излучения фотодиодом, регистрацию изменений отражательной способности поверхности объекта исследования во время и после воздействия излучением инициирующего лазера, определение длительности процесса горения, при этом инициируют процесс горения лазерным воздействием заданной длительности и мощности, после фиксации момента начала воздействия инициирующего излучения генерируют ультразвуковые волны, облучают ими объект исследования, принимают отраженные от него ультразвуковые волны, преобразуют их в электрические сигналы, которые усиливают, преобразуют в цифровой вид, сохраняют и анализируют, причем по амплитуде отраженных волн судят об отражательной способности поверхности объекта исследования, а по времени распространения ультразвуковых волн судят об изменении его размера. Технический результат: обеспечение возможности регистрировать отражательную способность поверхности объекта исследования и определять временные параметры его горения даже в случае сильного задымления. 2 ил.

Изобретение относится к области исследования материалов и может быть использовано для исследования процессов высокотемпературного горения порошков металлов. Устройство для исследования процесса горения порошков металлов или их смесей содержит инициирующий лазер, на оптической оси которого последовательно размещены механический затвор, светоделительная пластина, двояковыпуклая линза и объект исследования, расположенный на линейном трансляторе. Механический затвор соединен с контроллером. Фотодиод установлен напротив светотоделительной пластины под углом к оптической оси инициирующего лазера, равном углу отражения светоделительной пластины. Напротив объекта исследования, рядом друг с другом, установлены излучатель и приемник. Излучатель соединен с генератором ультразвуковых импульсов. Приемник соединен с усилителем, который связан с аналого-цифровым преобразователем. Фотодиод, генератор ультразвуковых импульсов и аналого-цифровой преобразователь связаны с контроллером, который подключен к персональному компьютеру. Технический результат – обеспечение исследования процесса горения даже в условиях сильного задымления. 2 ил.

Изобретение относится к области квантовой электроники, а именно неразрушающему контролю и диагностике оптическими методами, и может быть использовано для исследования процессов высокотемпературного горения порошков металлов или их смесей, а также процессов взаимодействия лазерного излучения с веществом. В заявленном устройстве поверхность объекта исследования освещают излучением двух усилителей яркости на парах бромида меди, работающих синхронно с регулируемой задержкой по отношению друг к другу. При этом задержку устанавливают таким образом, чтобы излучение одного усилителя яркости не оказывало влияния на усиление другого. Работу двух усилителей яркости синхронизируют за счет регулирования моментов включения двух тиратронов в схемах возбуждения, которые задаются путем изменения времени прихода импульсов запуска на сетки тиратронов за счет изменения индуктивностей ферровариометров, которое обеспечивают путем плавного перемещения ферромагнитных сердечников внутри катушек индуктивности. Использование двух каналов получения изображений позволяет исследовать две области объекта исследования практически одновременно в пределах времени экспозиции цифровых камер. Технический результат - возможность одновременного, в пределах одного межимпульсного интервала усилителя яркости, наблюдения горения порошков с различным увеличением и пространственным разрешением в одной области объекта исследования и возможность одновременного в пределах одного межимпульсного интервала усилителя яркости наблюдения горения в двух областях объекта исследования. 4 ил.

Изобретение относится к области неразрушающего контроля и диагностики оптическими методами и касается устройства для исследования процесса горения нанопорошков металлов или их смесей. Устройство содержит инициирующий лазер, две цифровые камеры и лазерный усилитель яркости, на оптической оси которого с одной стороны последовательно расположены собирающая линза и вогнутое зеркало, вдоль оптической оси которого расположен линейный транслятор, на котором размещен объект исследования. С другой стороны лазерного усилителя яркости установлены нейтральный светофильтр, первый объектив, первый полосовой светофильтр и первая цифровая камера. На оптической оси второй цифровой камеры установлены второй объектив, второй полосовой светофильтр и объект исследования. Устройство также содержит лазер подсветки, с одной стороны от которого, на его оптической оси расположено поворотное зеркало с возможностью отражения лазерного излучения на объект исследования через последовательно расположенные диафрагму и расширитель пучка. Технический результат заключается в повышении яркости и контрастности изображений поверхности нанопорошков и обеспечении возможности изменения освещенности объекта исследования. 3 ил.

Изобретение относится к области квантовой электроники, а именно неразрушающего контроля и диагностики оптическими методами, и может быть использовано для исследования процессов высокотемпературного горения порошков металлов, а также процессов взаимодействия лазерного излучения с веществом. Устройство для исследования процесса горения порошков металлов или их смесей содержит лазерный усилитель яркости на основе активного элемента на парах бромида меди, связанный с высоковольтным источником импульсов, к которому подключен оптический преобразователь, который соединен с задающим генератором. С одной стороны лазерного усилителя яркости на его оптической оси последовательно установлены нейтральный светофильтр, первый объектив, полосовой светофильтр и первая цифровая камера, вход включения записи которой соединен с контроллером. С другой стороны от лазерного усилителя яркости на его оптической оси, последовательно расположены собирающая линза и вогнутое зеркало, установленное на поворотной платформе, которая через привод соединена с шаговым двигателем, обмотки которого соединены с контроллером шагового двигателя. На оптической оси инициирующего лазера последовательно расположены механический затвор, первая светоделительная пластина, первая двояковыпуклая линза и линейный транслятор для размещения объекта исследования. Линейный транслятор расположен вдоль оптической оси вогнутого зеркала. Первый фотодиод установлен напротив первой фотоделительной пластины под углом к оптической оси лазера, равном углу отражения первой светоделительной пластины. Второй фотодиод установлен над объектом исследования с возможностью регулирования расстояния до него. Первый и второй фотодиоды соединены с осциллографом. На оптической оси второй цифровой камеры установлены второй объектив, второй полосовой светофильтр и объект исследования. Первая и вторая цифровые камеры соединены с персональным компьютером. Вход синхроимпульсов и вход включения записи первой цифровой камеры подключены к схеме синхронизации, которая соединена с оптическим преобразователем, с контроллером механического затвора, кнопочной клавиатурой и контроллером шагового двигателя. Технический результат: одновременная запись изображения и видео процесса горения в собственном свете и через усилитель яркости, регистрация полной яркости свечения объекта исследования, возможность дистанционного исследования, возможность перемещения области наблюдения вдоль объекта исследования с регулируемой скоростью в режиме реального времени, а также повышение безопасности при работе с горючими веществами. 4 ил.

Изобретение относится к порошковой металлургии, в частности, к обработке для улучшения свойств нанопорошков алюминия. Может использоваться при приготовлении твердых ракетных топлив, пиротехнических составов. Нанопорошок алюминия, полученны электрическим взрывом алюминиевой проволоки, насыпают в емкость из немагнитного материала на высоту не более 15 мм. Емкость размещают на медном проводнике так, чтобы дно емкости соприкасалось с поверхностью проводника и воздействуют в воздушной атмосфере переменным магнитным полем частотой 50 Гц, создаваемым при прохождении по проводнику тока силой 100-600 А в течение не менее 20 минут. Обеспечивается повышение удельного теплового эффекта окисления порошка, а также расширение арсенала средств активации. 1 з.п. ф-лы, 3 ил., 1 табл.

Изобретение относится к области квантовой электроники, а именно неразрушающему контролю и диагностике оптическими методами, и может быть использовано для исследования процессов высокотемпературного горения порошков металлов, а также процессов взаимодействия лазерного излучения с веществом. Заявленный способ исследования процесса горения порошков металлов или их смесей включает поджиг объекта исследования, фокусировку излучения лазерного усилителя, работающего в режиме сверхсветимости на объекте исследования, сбор и направление сигнала, отраженного от него, на вход лазерного усилителя яркости, где его усиливают и проецируют на цифровую камеру, изображение которой передают в персональный компьютер, где представляют в цифровом виде для обработки и анализа изображений, причем импульс сверхсветимости лазерного усилителя синхронизуют с экспозицией цифровой камеры. Одновременно инициируют процесс горения в предварительно спрессованном порошке с помощью сфокусированного излучения инициирующего лазера, фиксируют момент начала воздействия инициирующего излучения одним фотодиодом, освещают поверхность объекта сфокусированным излучением усилителя яркости, усиливают отраженное излучение, масштабируют по интенсивности, регистрируют полное излучение вторым фотодиодом, регистрируют монохроматическое излучение цифровой камерой. По интенсивности сигнала второго фотодиода судят об отражательной способности поверхности порошка во время и после воздействия излучением инициирующего лазера, а по форме сигнала второго фотодиода судят о временных параметрах процесса горения. Технический результат - возможность одновременного инициирования процесса горения и получения количественной информации о временных характеристиках процессов горения порошков металлов и их смесей в режиме реального времени. 2 ил.

Изобретение относится к области квантовой электроники, а именно к неразрушающему контролю и диагностике оптическими методами, и может быть использовано для исследования процессов высокотемпературного горения порошков металлов, а также процессов взаимодействия лазерного излучения с веществом. Заявленное устройство для исследования процесса горения порошков металлов или их смесей содержит лазерный усилитель яркости на основе активного элемента на парах бромида меди, связанный с высоковольтным источником импульсов, с одной стороны от усилителя вдоль его оптической оси расположены первый объектив и объект исследования, цифровую камеру, установленную соосно с лазерным усилителем и связанную с персональным компьютером. На оптической оси инициирующего лазера последовательно расположены механический затвор, первая светоделительная пластина, первая двояковыпуклая линза и объект исследования, установленный на линейном трансляторе. Первый фотодиод установлен напротив первой фотоделительной пластины под углом к оптической оси лазера, равным углу отражения первой светоделительной пластины. С другой стороны усилителя яркости на его оптической оси последовательно установлены вторая светоделительная пластина, нейтральный фильтр, второй объектив, полосовой фильтр и цифровая камера. На оптической оси второго фотодиода последовательно расположены диффузор, вторая двояковыпуклая линза, нейтральный светофильтр, вторая светоделительная пластина. Вход синхроимпульсов цифровой камеры подключен к формирователю импульсов, который соединен с оптическим преобразователем. Вход включения записи цифровой камеры соединен с контроллером, который соединен с механическим затвором. Первый и второй фотодиоды соединены с цифровым осциллографом, который связан с персональным компьютером. Задающий генератор подключен к оптическому преобразователю, который соединен с источником высоковольтных импульсов. Технический результат - возможность одновременно инициировать процесс горения и получать количественную информацию о временных характеристиках процессов горения порошков металлов и их смесей в режиме реального времени. 2 ил.

Изобретение относится к области порошковой металлургии, в частности к очистке нанопорошка вольфрама. Может быть использовано для удаления сорбированных газов и воды с поверхности и из объема порошка при ее подготовке к дальнейшему использованию в технологическом процессе. Дегазацию осуществляют облучением образца СВЧ-излучением в атмосфере воздуха импульсами длительностью от 5 до 3000 нс, длиной волны 10 см, частотой следования импульсов не более 50 Гц в течение не менее 1 минуты. Обеспечивается дегазация абсорбированных порошком молекул химических соединений. 1 табл., 2 ил.

Изобретение относится к области очистки нефтей и нефтепродуктов, от серо-, азот- и кислородсодержащих соединений путем контактирования с неорганическим сорбентом и обработки ультразвуком, и может быть использовано в подготовке нефти к транспортировке и/или в цикле подготовки сырой нефти к переработке или очистке нефтепродуктов перед использованием. Способ очистки нефти от гетероатомных компонентов включает использование сорбента в виде смеси порошков оксидов: NiO:CuO:CoO:CaO в соотношении 1,0:2,0:1,0:(0,5-0,7) массовых частей, которую перемешивают с нефтью в соотношении 1:5 при атмосферном давлении. Полученную смесь сорбента с нефтью подвергают воздействию ультразвука с частотой 22 кГц и интенсивностью 0,15 Вт/м2 при времени обработки не более 10 мин, фильтруют. Остатки нефти с сорбента смывают смесью растворителей гексан-бензол-этанол, с последующей его отгонкой при атмосферном давлении. Обработанную нефть направляют на переработку. Использованный сорбент промывают смесью растворителей бензол-диметилкетон для удаления сорбированных гетероатомных соединений. Технический результат: уменьшение содержания в нефти гетероатомных компонентов на 5,28-5,34%, снижение кинематической вязкости нефти до 50 мм2/с. 1 з.п. ф-лы, 1 табл., 1 пр., 2 ил.

Изобретение относится к порошковой металлургии, в частности к обработке металлических порошков для улучшения их термохимических свойств. Может быть использовано для повышения реакционной способности порошков алюминия при горении, спекании, в технологиях порошковой металлургии, 3D печати, а также для активирования процессов синтеза интерметаллидов, процессов горения твердых топлив и пиротехнических составов, взаимодействия с водой и получения водорода. Способ модифицирования микро- и нанопорошков алюминия включает облучение образца порошка высокоэнергетичным излучением, которое обеспечивает накопление положительного заряда внутренней части частицы алюминия. В качестве высокоэнергетического излучения используют СВЧ-излучение, которым облучают образцы в воздушной атмосфере импульсами длительностью 25 нс, частотой излучения 2,8 ГГц и плотностью мощности 8 кВт/см2, частотой следования 25 Гц в течение не менее 10 минут. Технический результатом является повышение запасенной энергии в порошках. 1 табл., 2 ил.

Изобретение относится к активации нанопорошка алюминия, полученного электрическим взрывом алюминиевой проволоки, и может быть использовано при приготовлении твердых ракетных топлив, пиротехнических составов, интерметаллидов алюминия и порошковых сплавов. Пассиваируют нанопорошок алюминия воздухом, содержащим пары воды, затем пассивированный нанопорошок алюминия нагревают до 300-400°C в атмосфере воздуха со скоростью нагрева от 10 до 30°C/мин и выдерживают при этой температуре в течение 30 мин. Обеспечивается повышение теплового эффекта окисления. 3 ил., 1 табл.

Изобретение относится к технологии получения керамических порошков нитрида алюминия, которые могут быть использованы в электронике, электротехнике, в частности, в качестве материала подложек мощных силовых и СВЧ-полупроводниковых приборов. Нитрид алюминия получают путем сжигания компактированного в пресс-форме при давлении 7 МПа нанопорошка алюминия с добавлением нанопорошка железа в количестве 0,2 мас.% в воздухе. Технический результат изобретения заключается в повышении выхода нитрида алюминия до 90 мас.% в продуктах сгорания. 2 табл.
Изобретение относится к технологии получения твердого органического топлива, в частности топливных брикетов, и может использоваться для обогрева бытовых помещений, в полевых условиях, на транспорте и в промышленности

Изобретение относится к области выращивания микромонокристаллов нитрида алюминия

Изобретение относится к производству газопоглотителей из порошка титана для электровакуумных и других приборов и может применяться в качестве газопоглотителя различных газов при пониженном давлении в рентгеновских трубках, в ускорителях элементарных частиц
Изобретение относится к технологии получения нитрида алюминия и предназначено для использования в технологии тугоплавких керамических изделий
Изобретение относится к малой теплоэнергетике, в частности к составам термитного топлива, способным при инициировании претерпевать химические превращения с выделением большого количества тепла, преимущественно к таким составам, которые не детонируют и в которых окислительно-восстановительные реакции идут в воздухе в режиме горения без участия специального окислителя и без образования жидкой фазы

 


Наверх