Патенты автора Асташкина Ольга Владимировна (RU)

Изобретение относится к низкоплотным углеродным теплоизоляционным материалам, которые могут быть использованы в качестве футеровки высокотемпературных печей с неокислительной средой и касается многослойного углеродного материала. Материал включает углеродный пенистый слой, образующийся из фенольной смолы, армированной углеродными частицами, промежуточные слои и внешние слои на основе углерода. Пенистый слой выполнен комбинированным из трех слоев, состоящим из центрального пенистого слоя плотностью 0,01-0,02 г/см3, размером ячеек 1-2 мм, с содержанием в нем частиц технического углерода 5-7%, соединенного взаимным проникновением в месте контакта с двух сторон прилегающими пенистыми слоями плотностью 0,04-0,07 г/см3, размером ячеек 0,5-0,7 мм, с содержанием в них частиц технического углерода 33-35%, а промежуточные слои выполнены из углеродного нетканого материала плотностью 0,10-0,14 г/см3, внешние слои выполнены из графитовой фольги плотностью 0,9-1,1 г/см3 при следующем соотношении слоев: внешний слой из графитовый фольги:промежуточный слой из углеродного нетканого материала:прилегающий пенистый слой:центральный пенистый слой:прилегающий пенистый слой:промежуточный слой из углеродного нетканого материала:внешний слой из графитовой фольги, равном 1:4:7:10:7:4:1. Изобретение обеспечивает снижение теплопроводности за счет перераспределения плотностей материала от внешнего слоя из графитовой фольги к промежуточным слоям из углеродного нетканого материала и комбинированному пенистому слою, обеспечивающих одновременное распределение входящего теплового потока и отражение его крупными порами центрального пенистого слоя образованного из фенольной смолы с техническим углеродом при повышении прочности многослойного углеродного материала. 3 ил., 1 табл., 11 пр.

Изобретение относится к полимерным композициям, применяемым для изготовления волокнистых материалов. Полимерная композиция включает металлсодержащую флалоцианиновую добавку, представляющую собой гексадекагалогенфталоцианин меди в количестве 14,998-4,999 мас.ч. В качестве полимера композиция содержит продукт сополиконденсации смеси терефталевой, изофталевой, паратолуиловой, метатолуиловой кислот и гидразин сульфата, и метаазобензолдикарбоновой кислоты в количестве 85-95 мас. ч. Добавка дополнительно содержит углеродные наночастицы в количестве 0,002-0,001 мас.ч. Изобретение также относится к способу получения прядильного раствора на основе указанной полимерной композиции. Обеспечивается сохранение скорости формования, динамической вязкости и концентрации прядильного раствора с одновременным формированием поверхностного слоя из углеродных наночастиц на получаемых филаментах при прохождении через фильеру для формования синтетических бумаг с электростатическими свойствами. 2 н.п. ф-лы, 1 ил., 1 табл., 1 пр.

Изобретение относится к области химической промышленности, а именно к получению полиоксадиазольных волокнистых материалов, используемых для получения, например, сорбционно-активных материалов. Техническим результатом заявляемого изобретения является улучшение технологичности процесса формования путем сохранения динамической вязкости при увеличении концентрации полезного вещества за счет введения добавки, состоящей из технического углерода и железа. Технический результат достигается тем, что в способе получения прядильного раствора, заключающегося в загрузке сначала серной кислоты, содержащую 17-65 мас. % свободного ангидрида, затем 0,02-22,9 мас. % арилендикарбоновой кислоты, представляющей собой терефталевую кислоту с 0,004-0,017 мас. % паратолуиловой кислоты, 3,1-27,4 мас. % гидразинсульфата с 0,05-34,0 мас. % воды и 0,05-21,8 мас. % метаазобензолдикарбоновой кислоты, нагревании полученного раствора при постоянном перемешивании до 50-90°С в течение 0,5-1,5 ч, выдерживании при этой температуре 3-12 ч до получения 6-20%-ного раствора олигомера, охлаждении его до 20-35°С со скоростью 0,5-5°С/мин, а затем введении 2-89% серной кислоты, содержащей 17-65 мас. % серного ангидрида, и выдерживании 3-5,5 ч при постоянном перемешивании до получения 5,0-14,8%-ного раствора олигомера, затем при постоянном перемешивании проведении поликонденсации, при нагревании раствора до 90-160°С в течение 0,5-1,5 ч, выдерживании при этой температуре 0,5-3 ч, затем охлаждении до 60-120°С и дополнительном введении 3,4-94,2 мас. % серной кислоты с 6-8 мас. %) воды, продолжая охлаждать полученный раствор до 20-35°С при постоянном перемешивании в течение 3,5-5,5 ч до получения прядильного раствора полимера в серной кислоте с вязкостью 2000-6000 П, при этом поликонденсацию проводя непрерывным способом при непрерывном дозировании серной кислоты с 6-8 мас. % воды в прядильный раствор, затем проводя дегазацию в аппарате непрерывного действия в течение 2-48 ч до достижения содержания воздуха в растворе 1-6 мл/л, после чего прядильный раствор подают на формование известным способом, причем в 3,4-94,2 мас% серную кислоту с 6-8 мас. % водой дополнительно вводят добавку в количестве 2,5-5 масс. %, представляющую из себя соединение железа с техническим углеродом в соотношении 0,05%÷99,95%, при этом добавку в кислоту вводят частями, сначала 1/3 от выбранного количества, а затем остальное при непрерывном перемешивании в два приема равными долями при постоянном перемешивании на ультразвуковом проточном диспергаторе при частоте 24 кГц в течение 2,5-5,5 ч, продолжая охлаждать полученный раствор при постоянном перемешивании до получения прядильного 15-19%-ого раствора полимера в серной кислоте с вязкостью 2000-6000 П. 2 табл., 1 пр.

Изобретение относится к области углеродных нетканых материалов, в том числе для использования в качестве материала для изготовления газодиффузионных электродов электрохимических источников тока. Техническим результатом изобретения является повышение прочности по всему объему материала за счет армирования наружных слоев нетканых материалов из штапелированных волокон разреженной тканью, образованной полотняным переплетением вискозных нитей, при одновременном снижении электросопротивления получаемых графитированных нетканых материалов и сохранении воздухопроницаемости путем формирования каналов сложной изогнутой формы, которые в совокупности со сквозными каналами образуют пористую структуру с возможностью регулирования воздухопроницаемости и более стабильный подвод газов в зону реакции при работе газодиффузионных электродов электрохимических источников тока. Предложен нетканый материал, состоящий из двух нетканых наружных слоев и внутреннего каркасного слоя, включающих однородные вискозные волокна, причем слои соединены между собой иглопрокалыванием, внутренний каркасный слой выполнен из разреженной ткани с поверхностной плотностью 40-96 г/м2, образованной полотняным переплетением вискозных нитей под углом в 90 градусов с линейной плотностью нитей 13-52 Текс с размером ячейки от 1×1 до 4×4 мм, и уложен между неткаными наружными слоями из вискозных волокон с длиной штапелирования не менее 51 мм с поверхностной плотностью одного слоя 58-120 г/м2 и числом проколов 18-30 на 1 см2 и поверхностной плотностью 36-96 г/м2 и числом проколов 24-48 на 1 см2 для другого слоя, смещенными относительно друг друга на 1,5-2 мм. 3 табл., 4 ил.

Предлагаемое изобретение относится к области получения углеродных нетканых материалов, в том числе для использования в качестве материала для изготовления газодиффузионных катодов для химических источников тока. Техническим результатом изобретения является улучшение технологичности процесса за счет исключения стадии дополнительной ориентации каркасного слоя за счет армирования наружных слоев нетканых материалов из штапелированных волокон разреженной тканью, образованной полотняным переплетением полиоксадиазольных нитей, при одновременном увеличении прочности по всему объему получаемых графитированных нетканых материалов за счет введения разреженной ткани, снижении электросопротивления и сохранении воздухопроницаемости путем формирования каналов сложной изогнутой формы, которые в совокупности со сквозными каналами образуют пористую структуру с возможностью регулирования воздухопроницаемости, и регулирование подачи газов в зону реакции за счет микропроскальзывания слоев относительно друг друга при работе газодиффузионных катодов химических источников тока. Способ получения углеродного нетканого материала, включающий формирование трехслойного нетканого материала, состоящего из двух иглопробивных наружных слоев и внутреннего каркасного слоя, с последующим иглопрокалыванием, а затем карбонизацией полученного нетканого материала в среде азота при постепенном повышении температуры до 600-700°C и дальнейшей графитацией при температуре 1500-2500°C, формирование трехслойного нетканого материала осуществляют путем смещения относительно друг друга на 1,5-2 мм двух наружных иглопробивных слоев с различным числом проколов в соотношении 1:2 с поверхностной плотностью одного слоя 72-150 г/м2 и числом проколов 6-18 на 1 см2 и поверхностной плотностью 45-120 г/м2 и числом проколов 12-36 на 1 см2 для другого слоя, полученных из вискозных штапелированных волокон с длиной не менее 51 мм, и каркасный слой с поверхностной плотностью 80-150 г/м2, состоящий из разреженной ткани, образованной полотняным переплетением полиоксадиазольных нитей под углом в 90 градусов с линейной плотностью 24-39 Текс, с размером ячейки от 1×1 до 4×4 мм, иглопрокалывают с получением нетканого материала объемной плотностью 71-108 кг/м3. 4 табл.

Предлагаемое изобретение относится к области получения углеродных нетканых материалов, в том числе для использования в качестве материала для изготовления газодиффузионных электродов электрохимических источников тока. Техническим результатом изобретения является улучшение технологичности процесса за счет исключения стадии дополнительной ориентации каркасного слоя за счет армирования наружных слоев нетканых материалов из штапелированных волокон разреженной тканью, образованной полотняным переплетением вискозных нитей, при одновременном увеличении прочности по всему объему получаемых графитированных нетканых материалов за счет введения разреженной ткани, снижении электросопротивления и сохранении воздухопроницаемости путем формирования каналов сложной изогнутой формы, которые в совокупности со сквозными каналами образуют пористую структуру с возможностью регулирования воздухопроницаемости и более стабильный подвод газов в зону реакции при работе газодиффузионных электродов электрохимических источников тока. Способ получения углеродного нетканого материала, включающий формирование трехслойного нетканого материала из вискозного сырья, состоящего из двух иглопробивных наружных слоев и внутреннего каркасного слоя, с последующим иглопрокалыванием, а затем карбонизацией полученного нетканого материала в среде азота при постепенном повышении температуры до 600-700°C и дальнейшей графитацией при температуре 1500-2500°C, причем формирование трехслойного нетканого материала осуществляют путем смещения относительно друг друга на 1,5-2 мм двух наружных иглопробивных слоев с различным числом проколов в соотношении 1:2 с поверхностной плотностью одного слоя 72-150 г/м2 и числом проколов 6-18 на 1 см2 и поверхностной плотностью 45-120 г/м2 и числом проколов 12-36 на 1 см2 для другого слоя, полученных из вискозных штапелированных волокон с длиной не менее 51 мм, и каркасный слой с поверхностной плотностью 50-120 г/м2, состоящий из разреженной ткани, образованной полотняным переплетением вискозных нитей под углом в 90 градусов с линейной плотностью 13-52 текс, с размером ячейки от 1×1 до 4×4 мм, иглопрокалывают с получением нетканого вискозного материала объемной плотностью 71-112 кг/м3. 4 табл.

Предлагаемое изобретение относится к области углеродных нетканых материалов, в том числе для использования в качестве материала для изготовления газодиффузионных катодов для химических источников тока. Техническим результатом изобретения является повышение прочности по всему объему материала за счет армирования наружных слоев нетканых материалов из штапелированных волокон разреженной тканью, образованной полотняным переплетением полиоксадиазольных нитей, при одновременном снижении электросопротивления получаемых графитированных нетканых материалов и сохранении воздухопроницаемости путем формирования каналов сложной изогнутой формы, которые в совокупности со сквозными каналами образуют пористую структуру с возможностью регулирования воздухопроницаемости и регулирование подачи газов в зону реакции за счет микропроскальзывания слоев относительно друг друга при работе газодиффузионных катодов химических источников тока. Нетканый материал состоит из двух нетканых наружных слоев и внутреннего каркасного слоя, включающих волокна, причем слои соединены между собой иглопрокалыванием, внутренний каркасный слой выполнен из разреженной ткани с поверхностной плотностью 64-120 г/м2, образованной полотняным переплетением полиоксадиазольных нитей под углом в 90 градусов с линейной плотностью нитей 24-39 текс, с размером ячейки от 1×1 до 4×4 мм, уложенный между неткаными наружными слоями из вискозных волокон с длиной штапелирования не менее 51 мм с поверхностной плотностью одного слоя 58-120 г/м2 и числом проколов 18-30 на 1 см2 и поверхностной плотностью 36-96 г/м2 и числом проколов 24-48 на 1 см2 для другого слоя, и смещенными относительно один другого на 1, 5-2 мм. 3 табл., 4 ил.
Изобретение относится к области химии и касается способа окислительной стабилизации волокон из полиакрилонитрила (ПАН), наполненных углеродными наночастицами. Сформированные волокна подвергают термообработке в воздушной среде при нагреве. Волокна с введенными углеродными наночастицами, в качестве которых используют технический углерод в количестве 0,2 - 10%, с поверхностью, содержащей кислород в количестве не менее 4,8 атомных %, подвергают окислительной стабилизации при повышении температуры от 180 до 230°С со скоростью 0,5°С в минуту в течение 90-110 минут. Изобретение обеспечивает полное проведение процесса окислительной стабилизации волокон из ПАН, наполненных техническим углеродом (углеродными наночастицами), а также упрощение технологии за счет уменьшения времени проведения процесса, при одновременном снижении теплопроводности волокон, достигнутом за счет введения в волокна технического углерода, что необходимо для дальнейшего получения углеродного материала, используемого в качестве теплоизоляции печей инертной среды. 1 табл., 5 пр.

Изобретение относится к области химии и касается способа окислительной стабилизации волокон из полиакрилонитрила(ПАН), наполненных углеродными нанотрубками. Сформированные волокна подвергают термообработке в воздушной среде при нагреве с сохранением постоянной длины. Содержание углеродных нанотрубок в волокнах составляет 0,3-0,5%. Поверхность нанотрубок содержит кислород в количестве не менее 3,5 ат.%. Окислительную стабилизацию проводят при повышении температуры от 180 до 230°С со скоростью 0,5°С в минуту в течение 110-130 минут. Изобретение обеспечивает упрощение технологии за счет уменьшения времени проведения процесса и увеличение прочностных характеристик волокон из ПАН за счет невысокого содержания углеродных нанотрубок. 1 табл., 7 пр.

Изобретение относится к области электротехники, а именно к материалам для газодиффузионных электродов электрохимических источников тока, в том числе для топливных элементов с полимерными протонообменными мембранами, использующихся в качестве экологически чистых источников тока, например, в городском автотранспорте

Изобретение относится к области электротехники, а именно к материалам для газодиффузионных электродов электрохимических источников тока, в том числе для топливных элементов с полимерными протонообменными мембранами, использующихся в качестве высоконадежных, экологически чистых источников тока, например, для резервных устройств бесперебойного питания

Изобретение относится к области электротехники, а именно к материалам для газодиффузионных электродов электрохимических источников тока, в том числе для топливных элементов с полимерными протонообменными мембранами, использующихся в качестве бесшумных источников тока, например, на подводных лодках

Изобретение относится к технологии получения окрашенных термо- и огнестойких полиоксадиазольных волокон, находящих применение для изготовления защитной одежды

Изобретение относится к полимерным композициям, применяемым для изготовления огнезащитных изделий, например волокон, пленок, иных формованных изделий

Изобретение относится к полимерным композициям, применяемым для изготовления огнезащитных изделий, например волокон, пленок, иных формованных изделий

 


Наверх