Патенты автора Канафеева Людмила Владимировна (RU)

Изобретение относится к области оптико-электронного приборостроения и касается способа изготовления светопоглощающих элементов оптических систем на подложках из алюминиево-магниевого сплава. Способ включает в себя предварительную обработку подложки из алюминиево-магниевого сплава травлением ее в водном растворе смеси азотной и фтористоводородной кислот. После этого наносят первый цинкатный слой химическим методом с последующим удалением этого слоя путем обработки в водном растворе смеси азотной и плавиковой кислот. Затем повторно наносят химическим методом цинкатный слой, после чего осуществляют химическое никелирование, затем гальваническое меднение, а целевое комплексное хромосодержащее покрытие получают путем гальванического хромирования. При этом все операции химической обработки и получения покрытий чередуют с промывкой в проточной воде. Окончательно полученные изделия извлекают из электролитической ванны, промывают и сушат на открытом воздухе при комнатной температуре. Технический результат заключается в повышении степени светопоглощения, улучшении адгезии каждого из слоев многослойного покрытия к подложке из алюминиево-магниевого сплава и уменьшении газовыделения при эксплуатации. 1 ил., 1 табл.
Использование: для изготовления светопоглощающих элементов оптико-электронных приборов и оптических систем. Сущность изобретения заключается в том, что способ изготовления светопоглощающих элементов оптических систем на подложках из нержавеющей стали включает предварительную подготовку подложек путем обезжиривания и промывки в холодной воде, последующее травление в растворе смеси минеральных кислот, нанесение слоя целевого светопоглощающего покрытия, при этом операцию травления поверхности деталей из нержавеющей стали ведут в растворе состава (г/л): кислота азотная 350-400; кислота плавиковая 20-25, при комнатной температуре, в течение не более 20 минут, после чего производят предварительное никелирование в электролите состава (г/л): никель хлористый 200-250; кислота соляная 50-100, при плотности тока 3-5 А/дм2, температуре 15-25°С, в течение 5-15 минут с никелевыми анодами, затем осуществляют процесс гальванического меднения в электролите состава (г/л): медь сернокислая 100-250; кислота серная 50-100; спирт этиловый ректификат 10-30 мл/л, при плотности тока 1,5-2 А/дм2, температуре 15-45°С в течение 4-5 часов, с медными анодами в чехлах, и окончательное целевое покрытие осуществляют путем хромирования в электролите состава (г/л): хромовый ангидрид 250-280; кислота борная 10-15; натрий уксуснокислый 3,0-5,0, при плотности тока 30-75 А/дм2, температуре 15-30°С в течение 5-15 минут с нерастворимыми свинцовыми анодами с получением светопоглощающего слоя. Технический результат: обеспечение возможности повышения заданной чистоты поверхности, заданных оптических показателей, улучшения адгезии покрытия к подложке из нержавеющей стали.

Изобретение относится к области гальванотехники и может быть использовано для изготовления светопоглощающих элементов оптических электронных приборов и оптических систем зеркал, телескопов космических аппаратов. Способ включает предварительную подготовку стальной подложки, обезжиривание и промывку, травление в растворе минеральной кислоты и нанесение светопоглощающего покрытия, при этом травление подложки проводят в растворе соляной кислоты концентрации 380-400 г/л при комнатной температуре в течение 20-30 мин, затем проводят осветление поверхности стальной подложки путем обработки в растворе, содержащем ангидрид хромовый 60-100 г/л и кислоту серную 5-15 г/л при комнатной температуре в течение 10-20 с, осуществляют гальваническое осаждение меди на подложку с получением подслоя меди в стандартном электролите, а хромосодержащее светопоглощающее покрытие получают путем гальванического хромирования в электролите следующего состава, г/л: хромовый ангидрид 250-280, кислота борная 10-15, натрий азотнокислый 3,0-5,0, при плотности тока 30-75 А/дм2, температуре 15-30°С в течение 5-15 мин, промывают подложку в проточной холодной воде и сушат на открытом воздухе при комнатной температуре. Технический результат: повышение адгезии покрытия к подложке за счет получения заданного рельефа шероховатости поверхностной обработки, обеспечение заданных оптических показателей светопоглощения, а также получение покрытия, при эксплуатации которого минимален объем газовыделения. 1 ил., 1 пр.

Использование: получение светопоглощающих многослойных изделий для изготовления светопоглощающих элементов оптических - электронных приборов и оптических систем (зеркал) космических аппаратов. Техническим результатом изобретения является разработка способа получения светопоглощающих элементов оптических систем, обеспечивающего получение оптических элементов с заданной степенью светопоглощающих свойств формируемого покрытая, а также получение покрытия, при эксплуатации которого минимален объем газовыделения. Сущность изобретения: в способе изготовления светопоглощающих элементов оптических систем на титановых подложках, включающем предварительную подготовку титановых подложек, обезжиривание и промывку, последующее травление в растворе минеральных соединений, нанесение слоя целевого покрытия, согласно изобретению, обезжиривание проводят в растворе смеси тринатрийфосфата концентрации 35-40 г/л и кальцинированной соды концентрации 35-40 г/л, при комнатной температуре в течение 10-15 мин, операцию травления ведут в смеси растворов соляной 15-25 г/л и плавиковой 10-15 г/л минеральных кислот в течение 1-2 мин, затем проводят осветление поверхности титановой подложки путем обработки в растворе азотной кислоты 400-900 г/л при комнатной температуре в течение 25-30 сек, затем ведут активирование поверхности титановой подложки в растворе соляной кислоты 380-400 г/л при комнатной температуре в течение 5-10 сек, затем проводят обработку в этиленгликоле в течение 10-15 сек, затем осуществляют цинкатную обработку в растворе определенного состава, затем полученную цинкатную пленку удаляют обработкой в растворе азотной кислоты 400-900 г/л; после проведения повторной обработки в этиленгликоле и цинкатной обработки в упомянутом цинкатном растворе осуществляют химическое никелирование, а целевое комплексное хромосодержащее покрытие получают путем гальванического хромирования, при этом все операции химической обработки и получения покрытий чередуют с промывкой в проточной воде и окончательно полученные изделия извлекают из электролитической ванны, промывают и сушат на открытом воздухе при комнатной температуре. 1 ил.

Изобретение относится к технологии изготовления светоотражающих элементов сложной формы и может быть использовано для получения высокоточных светоотражающих оптических элементов астрономических зеркал. Согласно изобретению, предварительно на поверхности сложнопрофильных изделий формируют несущий металлизированный слой гальванического никель-кобальтового покрытия с содержанием кобальта в осадке 15-20%, из сульфаминового электролита при плотности тока 2,5-3,0 А/дм2, температуре 55-60°С. Полученную реплику снимают методом термоудара и наносят светоотражающий слой иридия методом высокоточного катодного напыления на внутреннюю поверхность никель-кобальтовой реплики с образованием тонкостенного светоотражающего элемента, предназначенного для последующей установки его в оптическую систему. Технический результат - обеспечение снижения толщины и внутренних напряжений несущего слоя заготовки за счет увеличения прочности заготовки, улучшения контрастности пятна и уменьшения деформации искажения изображения, получаемого с помощью готового оптического зеркала. 1 табл., 1 пр.

Изобретение относится к способу изготовления заготовки светоотражающего элемента для оптических систем, включающему предварительную химико-механическую обработку поверхности сложнопрофильных деталей, формирование металлизированного отражающего слоя. При этом формирование металлизированного светоотражающего слоя на основе иридия производят после снятия реплики, после нанесения последовательно подслоя химического цинка, нанесения никель-фосфорного слоя толщиной до 200 мкм, который подвергают термообработке в диапазоне температур 110-400°C и высокоинтенсивной полировке до 6-8 Å с получением дублируемой поверхности матрицы, с последующим формированием несущего слоя гальванического никеля из сульфаминового электролита следующего состава (г/л): никель сульфаминовый 300-400; никель двухлористый 12-15; кислота борная 25-40; натрий лаурилсульфат 0,01-0,1; сахарин 0,008 при плотности тока 2,5 А/дм2, температуре 55-60°C в течение 8 часов, после чего полученную металлизированную реплику снимают с матрицы методом термоудара, а собственно светоотражающий слой иридия наносят методом высокоточного катодного напыления на внутреннюю поверхность никелевой реплики с образованием тонкостенного светоотражающего элемента для последующей установки его в оптическую систему. Использование настоящего способа позволяет обеспечить повышение оптических и геометрических показателей, показателей адгезии никель-фосфорного покрытия к матрице и его механической прочности. 1 пр., 1 ил.

Изобретение относится к области обработки металлов давлением с использованием интенсивной пластической деформации и предназначено для получения нанокристаллических материалов с увеличенным уровнем механических свойств, и может быть использовано при обработке изделий из магнитомягких сплавов. Способ изготовления изделий из магнитомягкого сплава на основе железо-кобальт равноканальным угловым прессованием включает пескоструйную обработку поверхности заготовок, травление в смеси серной, плавиковой и азотной кислоты при их соотношении, г/л: 550-750, 250-300, 250-300, активирование поверхности заготовки в растворе соляной кислоты с концентрацией не менее 200 г/л, формирование на поверхности заготовки гальванического промежуточного слоя из никеля толщиной 3-5 мкм, формирование гальванического пластичного слоя из меди толщиной 80-100 мкм и равноканальное угловое прессование заготовок при давлении 1000 МПа в диапазоне температур 450-500°С. Изобретение обеспечивает значительное снижение электрического потенциала поверхности образцов, что снижает их окисляемость и позволяет увеличить количество проходов при прессовании. 1 ил., 1 табл., 2 пр.

Изобретение относится к технологии изготовления светоотражающих элементов сложной сферической или конусовидной формы для оптических систем и может быть использовано для получения высокоточных оптических элементов астрономических зеркал. Способ включает предварительную химико-механическую обработку поверхности сложнопрофильных деталей и формирование металлизированного отражающего слоя, формирование которого проводят после предварительной химико-механической обработки, последовательного нанесения подслоя химического цинка и никель-фосфорного слоя толщиной до 200 мкм, который подвергают полировке до 6-8 Å с получением дублируемой поверхности матрицы, которую пассивируют в растворе бихромата калия и формируют отражающий слой золота в цитратном электролите следующего состава, г/л: дициано-(1)аурат калия 8-12 (по Au), калий лимоннокислый 30-80, кислота лимонная 15-40, при плотности тока 0,5 А/дм2, температуре 55-60°C в течение 15-20 минут, и несущий слой гальванического никеля, после чего полученную металлизированную реплику снимают с матрицы методом термоудара с образованием тонкопленочного светоотражающего элемента для последующей установки его в оптическую систему. Технический результат: обеспечение повышения оптических, геометрических показателей и механической прочности металлизированного отражающего слоя. 1 пр., 1 ил.

Изобретение относится к области технологии изготовления оптических элементов и касается способа изготовления матриц сложной формы для заготовок элементов светоотражающих систем. Способ включает предварительную химико-механическую обработку поверхности, нанесение промежуточную цинкового слоя методом химического осаждения из многосоставного цинксодержащего раствора с последующим удалением этого слоя, повторное нанесение слоя цинка аналогичным методом и нанесение путем химического восстановления целевого никель-фосфорного слоя из раствора смеси многосоставных соединений никеля и фосфора. В состав раствора дополнительно вводят технологическую добавку аминоуксусной кислоты в количестве 10-15 г/л. Процесс получения целевого покрытия ведут за один прием при температуре 80-90°C. После нанесения никель-фосфорного слоя производят термообработку при температуре не более 400°C. Технический результат заключается в обеспечении высокой адгезии и прочности покрытия. 1 ил.

Изобретение относится к технологии механической обработки металлов давлением при интенсивной пластической деформации и может быть использовано для изготовления нанокристаллических труднодеформируемых металлов или полуфабрикатов с улучшенными физико-механическими свойствами

 


Наверх