Патенты автора Никитин Александр Юрьевич (RU)

Изобретение относится к вычислительной технике. Технический результат заключается в повышении эффективности защиты номеров банковских карт. Компьютерно-реализуемый способ токенизации номера банковской карты PAN (Primary Account Number), в котором получают PAN и осуществляют его разбиение на составляющие части: бин (BIN), состоящий из первых шести символов, маска (MASK), состоящая из четырех последних символов, и средняя часть (mPAN); определяют значение сдвига в таблице замен, при котором: вычисляют первое значение сдвига по таблице замен с помощью криптопреобразования конкатенированной строки значений BIN и MASK; вычисляют второе значение сдвига по таблице замен с помощью криптопреобразования mPAN; вычисляют суммарное значение сдвига путем сложения первого и второго значений сдвига; вычисляют индекс в таблице замен, с помощью нормализации суммарного значения сдвига по таблице замен, причем нормализация выполняется по размерности таблицы как остаток от деления смещения на количество строк таблицы, получая при этом искомый индекс в таблице замен; с помощью полученного индекса выбирают из таблицы замен токенизированную часть номера zPAN для замены mPAN; формируют токенизированный номер карты DPAN с помощью замены mPAN на zPAN, используя BIN и MASK полученного номера PAN. 4 н. и 3 з.п. ф-лы, 3 ил.

Изобретение относится к области металлургии. Для улучшения эксплуатационных свойства режущего инструмента и деталей проводят химико-термическую обработку деталей в условиях акустического резонансного воздействия потоком сжатого воздуха путем нагрева до температуры от 150 до 450 С° и охлаждения деталей в газовой смеси, состоящей из воздуха и газообразных химических реагентов, при этом нагрев и охлаждение деталей осуществляют в резонаторной камере при давлении 1.5-4.5 атм и воздействии на детали циркулирующим потоком сжатого воздуха на резонансной частоте в диапазоне 500-5000 Гц, а концентрация газовых компонент по отношению к воздушной среде в камере составляет: по водороду: от 2 до 2.5%, по метану: от 10 до 25%, по азоту: от 15 до 25%, по аммиаку: от 15 до 45%. Обработку проводят в устройстве, содержащем герметичную цилиндрическую камеру, имеющую подъемную крышку, центробежный воздушный нагнетатель с двигателем, расположенный по центру камеры, размещенные внутри камеры аксиальные резонаторные камеры с щелевыми соплами, каждая из которых имеет нагреватель, заслонку щелевого сопла с приводом ее поворота для регулирования ширины отверстия для прохождения воздушного потока от упомянутого нагнетателя, воздуховоды для циркуляции воздушного потока от резонансных камер до нагнетателя, датчики акустической вибрации и температуры, блок управления с таймером, на вход которого поступают сигналы от упомянутых датчиков из каждой камеры, а к выходам его подключены двигатель воздушного нагнетателя, приводы заслонок, датчик давления, электроклапаны подачи и сброса давления в цилиндрической камере и подъемно-поворотное устройство для подъемной крышки, газовая камера, имеющая трубопровод со штуцерами и электромагнитными клапанами для подачи в нее воздуха и газообразных химических реагентов, а также датчики, определяющие концентрацию газообразных химических реагентов, при этом в зоне воздушного нагнетателя герметичной камеры размещен электромагнитный клапан подачи газовой смеси от газовой камеры, а датчик газовой камеры связан с упомянутым блоком управления. 2 н. и 3 з.п. ф-лы, 4 ил., 3 табл.

Группа изобретений относится к нефтегазодобывающей промышленности, а именно к оборудованию нефтегазодобывающих скважин, и может быть использовано для ликвидации парафиногидратных пробок и поддержания в скважинах оптимального теплового режима в целях предупреждения и ликвидации парафиногидратных и асфальтосмолистых отложений на внутренней поверхности насосно-компрессорной трубы (НКТ). В скважину в зону образования отложений погружается нагревательная система, состоящая из линейного нагревательного элемента в виде внешней грузонесущей стальной брони грузонесущего кабеля и питающей жилы, по которой пропускают электрический ток высокой частоты и воздействуют на металл линейного нагревательного элемента высокочастотным полем питающей жилы, тем самым создавая индукционные высокочастотные токи в металлическом проводнике. Питающую жилу линейного нагревательного элемента либо электрически изолируют от металлического проводника как по всей длине линейного нагревательного элемента, так и в его головной части, либо замыкают накоротко на конец металлического проводника головной части, погруженной в скважину, и защищают изолированный или короткозамкнутый контакт от механического воздействия при погружении головной части в скважину. Длину линейного нагревательного элемента и частоту переменного тока, пропускаемого по питающей жиле выбирают из условия равенства периода переменного тока ¼, ½ или целой длине электромагнитной волны, распространяемой по линейному нагревательному элементу. Нагревательная система работает в скважине в стационарном режиме, но может быть использована и в мобильном варианте реализации системы. В процессе непрерывной работы нагревательной системы не изменяют частоту тока генератора, нагрузкой которого служит линейный нагревательный элемент. С целью исключения перегрева металлического проводника и питающей жилы контролируют среднюю температуру линейного нагревательного элемента путем измерения его добротности и в случае достижения добротности линейного нагревательного элемента величины, соответствующей максимально допустимой температуре, отключают высокочастотный ток через питающую жилу, а при достижении добротности, равной минимально возможной температуре в скважине, снова его включают. Техническим результатом является повышение надежности и расширение функциональных возможностей нагревательной системы для обеспечения не только ликвидации и предотвращения отложений в скважине, но и интенсификации добычи нефти. 2 н. и 2 з.п. ф-лы, 3 ил.

Изобретение относится к металлообрабатывающей промышленности, инструментальному производству и машиностроению. Для улучшения эксплуатационных свойств режущего инструмента и деталей за счет повышения твердости, прочности, износостойкости и ударной вязкости осуществляют обработку деталей в условиях акустического воздействия, включающую нагрев и охлаждение деталей в резонаторной камере при давлении 1,5-4,5 атм, причем нагрев ведут в пределах температур от 150 до 450°C, а охлаждение проводят при воздействии на детали циркулирующим потоком сжатого воздуха на резонансной частоте в диапазоне 500-5000 Гц. Устройство для обработки содержит герметичную цилиндрическую камеру, имеющую подъемную крышку, центробежный воздушный нагнетатель с двигателем, расположенный по центру камеры, размещенные внутри камеры аксиальные резонаторные камеры с щелевыми соплами, каждая из которых снабжена электронагревателем, заслонкой щелевого сопла с приводом ее поворота для регулирования ширины отверстия для прохождения воздушного потока от нагревателя, датчиками акустической вибрации, температуры, блоком управления с таймером, на вход которого поступают сигналы от упомянутых датчиков из каждой камеры, а к выходам которого подключены двигатель воздушного нагнетателя, привода заслонок, воздуховоды для циркуляции воздушного потока от резонансных камер до нагнетателя, датчик давления, электроклапаны подачи и сброса давления в цилиндрической камере и подъемно-поворотное устройство для подъемной крышки. 2 н. и 1 з.п. ф-лы, 2 табл., 5 ил.
Изобретение относится к транспорту и разгрузке нефтепродуктов в холодном и вязком состоянии и может быть использовано для повышения эффективности трубопроводного транспорта высоковязких нефтепродуктов и иных текучих сред и для ускоренного опорожнения транспортных емкостей и емкостей хранения нефтепродуктов. Способ включает низкотемпературный нагрев и вибрацию пристеночного тонкого слоя продукта путем воздействия на металлическую стенку емкости или трубопровода импульсными токами, протекающими по приложенному к стенке емкости или трубопровода индуктору от импульсного генератора, установленными внутри емкости или трубопровода. Способ обеспечивает повышение эффективности трубопроводной перекачки и слива высоковязких текучих сред с одновременным снижением энергетических затрат.

Группа изобретений относится к области нефтедобычи. Осуществляют электромагнитное и акустическое воздействие на глубину образования отложений в скважине. Используют короткие импульсы тока, длительность которых выбирают равной либо одному периоду, либо 1/2 периода электромагнитных колебаний, формируемых наземным генератором совместно с проводником, но не более 50 мкс. Напряжение, подаваемое на проводник, выбирают и устанавливают из условия обеспечения максимально возможной амплитуды, не превышающей пробивное напряжение его изоляции. Регулируют воздействие на скважину путем изменения скважности импульсов пропускаемого тока, поддерживая при этом амплитуду акустических колебаний в скважине максимальной. Устройство содержит наземный импульсный генератор, высоковольтный трансформатор и металлический изолированный проводник или стандартный геофизический кабель. Вывод погруженного в скважину на глубину отложений проводника подключен к выводу вторичной обмотки согласующего высоковольтного трансформатора, второй вывод вторичной обмотки трансформатора подключен к колонне труб скважины или к оплетке из стальных сплетенных грузонесущих жил геофизического кабеля. Повышается производительность очистки, снижаются энергозатраты, обеспечивается автоматическое регулирование. 2 н.п. ф-лы, 2 ил.

Изобретение относится к области измерительной техники и предназначено для использования при поверке средств измерений показателей качества электрической энергии при искаженных сигналах напряжения и тока

 


Наверх