Патенты автора Самойленко Владимир Валерьевич (RU)

Изобретение относится к системам управления силовыми преобразовательными устройствами и может быть использовано как устройство синхронизации в трехфазных управляемых мостовых выпрямителях, а также для синхронизации в цифровых и аналоговых системах управления вентильными преобразователями. Техническим результатом, достигаемым с помощью заявленных способа и устройства, является увеличение точности синхронизации напряжения, упрощение схемы синхронизации системы управления преобразователями напряжения и повышение надежности его работы. Сущность предлагаемого способа и устройства синхронизации системы управления преобразователями напряжения состоит в формировании исходного синхронизирующего напряжения, как результата двухуровневого деления полуволны фазного напряжения и их сравнении, осуществляющего синхронизацию цифровых (аналоговых) систем управления вентильными преобразователями и трехфазных регулируемых выпрямителей. 2 н.п. ф-лы, 5 ил.

Предложенное изобретение относится к области контрольно-измерительной техники и может быть использовано при бесконтактном контроле технического состояния радиоэлектронных систем (РЭС). Сущность предлагаемого способа многоуровневого комплексного контроля технического состояния РЭС состоит в представлении диагностического пространства, содержащего информационные признаки отказов РЭС в виде векторов средних измеренных параметров, формирующих матрицу технического состояния и статистику отклонений контролируемых параметров в допустимых пределах, характеризующие техническое состояние РЭС на нескольких уровнях. Фиксация результатов статистики отклонений контролируемых параметров в допустимых пределах осуществляется путем построения карты Хотеллинга. Выход статистики Хотеллинга за границу критической области является основным критерием перехода РЭС из нормального состояния в предаварийное (аварийное) состояние. При этом предлагается контроль технического состояния РЭС осуществить в два этапа: на первом этапе (этапе анализа) на основе статистического анализа измеряемых параметров N элементов РЭС, формируют М(k, n) групп диапазонов достоверности, на заведомо работоспособных экземплярах по разносторонним признакам создают их «рабочий профиль», представляющий количественные значения признаков работоспособных экземпляров оборудования, запоминают в виде эталонных матриц технического состояния. Затем измеряют мгновенные значения сигналов с выходов всех датчиков, при числе измерений N, оцифровывают, запоминают измеренные сигналы в виде векторов цифровой последовательности длиной N, из которых составляют матрицу технического состояния g1, …, gn размерностью N×N; на втором этапе (этапе идентификации) поэлементно сравнивают полученную матрицу технического состояния g1, …, gn с эталонными матрицами рабочего состояния элемента радиоэлектронной системы. Определяют уровень предаварийного состояния контролируемого элемента РЭС, идентифицируемый скоростью выхода контролируемого параметра за пределы диапазона достоверности. Идентифицируют техническое состояние РЭС по наибольшему числу совпадений элементов сравниваемых матриц и уровню предаварийного состояния. Идентифицируют место отказа и определяют класс технического состояния РЭС. Техническим результатом, наблюдаемым при реализации заявленного решения, является повышение достоверности идентификации технического состояния РЭС, расширение области применения технических средств контроля и диагностики, определение классов технических состояний объектов контроля и идентификация отклонений их параметров от нормы по нескольким признакам. 3 з.п. ф-лы, 5 ил.

Изобретение относится к области растениеводства, а также систем и аппаратуры передачи данных и предназначена для неразрушающей биодиагностики ксилемного потока травянистых растений с использованием беспроводной передачи данных. Система содержит датчик измерения ксилемного потока, закрепленный на стебле растения и состоящий из нагревательного элемента и двух измерительных сенсоров. Измерительные сенсоры закреплены вертикально выше и ниже нагревательного элемента. Система дополнительно снабжена устройством хранения и обработки данных, устройством беспроводной передачи данных, сервером, периферийным устройством и блоком питания. При этом нагревательный элемент соединен своим информационным входом с информационным выходом устройства хранения и обработки данных, информационные выходы измерительных сенсоров соединены с информационными входами устройства хранения и обработки данных, вход и выход которого соединены с соответствующими выходами и входами устройства беспроводной передачи данных, при этом последнее соединено с сервером по беспроводному каналу связи, а устройство обработки и хранения данных своим управляющим выходом соединено с входом периферийного устройства. При этом входы питания устройства обработки и хранения данных и устройства беспроводной передачи данных соединены с соответствующими выходами блока питания. Система позволяет реализовать возможность беспроводной передачи данных ксилемного потока контролируемых растений, а также беспроводного контроля устройствами периферии. 1 ил.

Изобретение относится к контрольно-измерительной технике и может быть использовано при разработке приборов, предназначенных для измерения электрической емкости конденсаторов и конденсаторных датчиков различных технологических параметров (уровня, давления, перемещения и т.д.). Способ измерения электрической емкости СX, основанный на регистрации времени заряда t1 измеряемого конденсатора с момента подачи на него через резистор R постоянного напряжения Е до момента достижения на измеряемом конденсаторе СX заранее принятого порогового значения напряжения U0, после подключения параллельно к измеряемому конденсатору СX образцового конденсатора СO с известной емкостью снова измеряют время заряда этих конденсаторов t2, не меняя при этом значение сопротивления R резистора, напряжения зарядного источника Е и заранее принятого порогового значения напряжения U0 на обкладках этих конденсаторов СX и СO. С помощью ключа К1 (фиг. 1) через резистор R в момент времени t=0 подают напряжение Е на конденсатор с измеряемой емкостью СX. Напряжение U1(t) на конденсаторе СX, контролируемое измерителем 1, начинает нарастать по экспоненте (фиг. 2), с постоянной времени T1. Как только U1(t) достигнет заранее принятого порогового значения U0, фиксируют момент времени t1. Отключают с помощью ключа K1 источник постоянного напряжения Е. С помощью ключа K3 разряжают конденсатор с измеряемой емкостью СX и подключают к нему параллельно с помощью ключа K2 образцовый конденсатор с емкостью СO. С помощью ключа K1 снова подают в момент времени t=0 напряжение Е на параллельно соединенные конденсаторы СX и СO. Напряжение U2(t) на их обкладках начинает нарастать по более пологой экспоненте (фиг. 2), с постоянной времени Т2.Как только U2(t) достигнет заранее принятого порогового значения U0, фиксируют момент времени t2. Измеряемую емкость вычисляют по формуле: ,где СO - емкость образцового конденсатора;t1 - время заряда конденсатора с измеряемой емкостью СX до заранее принятого порогового значения напряжения на его обкладках;t2 - время заряда параллельной цепи из конденсаторов СX и СO до заранее принятого порогового значения напряжения на их обкладках.Технический результат, который может быть достигнут с помощью предлагаемого способа измерения электрической емкости, направлен на устранение влияния изменения напряжения Е источника постоянного тока, сопротивления R резистора в цепи заряда конденсатора с измеряемой емкостью СX, на результат измерения, т.е. на повышение точности измерения электрической емкости. 1 табл., 3 ил.

Изобретение относится к контрольно-измерительной технике и может быть использовано для измерения электрической емкости конденсаторов и конденсаторных датчиков различных технологических параметров (уровня, давления, перемещения и т.д.). Способ измерения электрической емкости основан на регистрации времени заряда t1 измеряемого конденсатора с момента подачи на него через резистор R постоянного напряжения Е до момента достижения на измеряемом конденсаторе СХ заранее принятого порогового значения напряжения U0. Заменив измеряемый конденсатор СХ образцовым конденсатором СО с известной емкостью, измеряют время заряда образцового конденсатора t2, не меняя при этом значения сопротивления резистора R, напряжения зарядного источника Е и заранее принятого порогового значения напряжения U0 на конденсаторе. Измеряемую емкость вычисляют по формуле: где СО - емкость образцового конденсатора; t1 - время заряда конденсатора с измеряемой емкостью СХ до заранее принятого порогового значения напряжения на его обкладках; t2 - время заряда конденсатора СО до заранее принятого порогового значения напряжения на его обкладках. Технический результат заключается в повышении точности измерения электрической емкости. 1 табл., 3 ил.

Изобретение относится к контрольно-измерительной технике и может быть использовано при разработке приборов, предназначенных для измерения электрической емкости конденсаторов и конденсаторных датчиков различных технологических параметров (уровня, давления, перемещения и т.д.). Способ измерения электрической емкости заключается в регистрации времени заряда измеряемого конденсатора с момента подачи на него через резистор постоянного напряжения до момента достижения на измеряемом конденсаторе заранее принятого порогового значения напряжения. При этом после подключения последовательно к измеряемому конденсатору образцового конденсатора с известной емкостью снова измеряют время заряда этих конденсаторов, не меняя при этом значения сопротивления резистора, напряжения зарядного источника и заранее принятого порогового значения напряжения на обкладках этих конденсаторов, и измеряемую емкость вычисляют по формуле где CO - емкость образцового конденсатора;t1 - время заряда конденсатора с измеряемой емкостью CX до заранее принятого порогового значения напряжения на его обкладках;t2 - время заряда цепи из последовательно соединенных конденсаторов CX и CO до заранее принятого порогового значения напряжения на их обкладках. Техническим результатом является повышение точности измерения электрической емкости. 3 ил., 1 табл.

Изобретение относится к области санитарной гигиены и предназначено для обеззараживания воздуха в зданиях. Рециркулятор вентилируемого воздуха содержит воздушный фильтр (3), соединенный с впускным отверстием для воздуха, вентилятор (2), камеру (4) с ультрафиолетовыми лампами (5) и датчик влажности воздуха. Рециркулятор также содержит водяной насос (15), гидравлическую камеру (6), снабженную гидравлическим коллектором (7) с обратным патрубком (17) и с встроенными в корпус гидравлической камеры распылительными форсунками (8), дренажный желоб (9), вход которого соединен с корпусом гидравлической камеры и выполнен под форсунками, а выход соединен с входом водяного фильтра (12). Выход водяного фильтра (12) соединен с входом водяного насоса (15), выход которого соединен с обратным патрубком (17), который соединен с гидравлическим коллектором (7). Изобретение позволяет повысить качество и экологическую безопасность бактерицидной обработки рециркулируемого воздуха в закрытых помещениях. 1 ил., 1 табл.

Изобретение относится к области электротехники и предназначено для зажигания и питания током повышенной частоты газоразрядных осветительных ламп высокого давления

Изобретение относится к электротехнике, в частности к способам питания газоразрядных ламп и устройствам для их реализации, и может быть использовано в схемах зажигания и питания газоразрядных ламп высокого давления без вспомогательного пускового электрода при эксплуатации натриевых ламп высокого давления в осветительных установках теплиц

Изобретение относится к области электротехники и предназначено для зажигания и питания током повышенной частоты газоразрядных осветительных ламп высокого давления

Изобретение относится к пускорегулирующей аппаратуре и может быть использовано для запуска газоразрядных ламп высокого давления

Изобретение относится к контрольно-измерительной технике и может быть использовано для измерения давления

 


Наверх