Патенты автора Качалин Григорий Николаевич (RU)

Изобретение относится к газовой технике и может быть использовано для систем формирования высококипящих веществ заданной концентрации в потоке буферного газа в системах калибровки систем определения содержания различных атомарных и молекулярных веществ методами диодной спектроскопии. Устройство содержит полый корпус с входным и выходным фланцами, резервуар с высококипящим веществом в жидкой фазе, при этом полый корпус, входной и выходной фланцы снабжены системой нагрева, а устройство выполнено с возможностью протекания через корпус потока буферного газа. Резервуар выполнен в виде паза в стенке корпуса. Внутри корпуса, вдоль направления потока буферного газа, расположены, по меньшей мере, два элемента из открыто пористого смачиваемого высококипящим веществом материала, таким образом, что их нижняя часть погружена в резервуар с высококипящим веществом, а верхняя часть выступает над границей резервуара. Между элементами из пористого материала организован зазор для протекания потока буферного газа. Технический результат: обеспечение достижения в потоке буферного газа заданной концентрации высококипящего вещества при однократном проходе через корпус. 2 з.п. ф-лы, 2 ил.

Изобретение относится к энергетическому и химическому машиностроению и может быть использовано в теплообменном, массообменном оборудовании атомных и тепловых электростанций, химических производств. В устройстве для выравнивания профиля скоростей потока жидкости или газа, состоящем из участка трубопровода с размещенным в нем местным сопротивлением, в качестве которого используется открыто пористый материал металлорезина. Техническим результатом является выравнивание профиля скоростей потока жидкости или газа при значениях коэффициента сопротивления больше 2. 2 ил.

Изобретение относится к лазерной технике. В способе поперечной накачки рабочей среды лазера, включающем передачу излучения от диодных источников накачки в рабочую среду лазера с помощью оптических волокон, плотно упакованных на концевом участке с образованием излучающей площадки размером d×h, где d≤h, h - размер излучающей площадки волокон по оси распространения излучения генерации d - размер излучающей площадки волокон перпендикулярно оси распространения излучения генерации, и формирующей оптики, которая создает поле накачки лазера на пересечении пучка накачки и рабочей среды лазера, которая располагается в пространстве между формирующей оптикой и плоскостью действительного изображения излучающей площадки, причем дальнюю границу рабочей среды совмещают с этой плоскостью, формирующую оптику выполняют из двух компонентов. Первый из компонентов представляет собой аксиально-симметричную линзу, формирующую мнимое изображение излучающей площадки, причем линзу располагают на минимальном расстоянии L от излучающей площадки, определяют ее фокусное расстояние как где θ - полная расходимость излучения на выходе из оптических волокон. Второй компонент устанавливают в задней фокальной плоскости первой линзы и определяют его фокусное расстояние как где D - размер поля накачки, совпадающий с размером рабочей среды по оси распространения излучения генерации, при этом на расстоянии от задней фокальной плоскости второго компонента формирующей оптики строится действительное изображение излучающей площадки, где - расстояние от излучающей площадки до ее мнимого изображения. Технический результат заключается в уменьшении габаритов формирующей оптики при создании высокой интенсивности накачки в среде лазера. 3 з.п. ф-лы, 1 ил.

Изобретение относится к лазерной технике. Способ поперечной накачки активной среды лазера включает передачу излучения от диодных источников накачки с помощью оптических волокон, плотно упакованных на концевом участке в ряд, с расположением всех торцов волокон в одной плоскости, образующей излучающую площадку. Формирующая оптика создаёт область накачки лазера на пересечении пучка накачки и излучения генерации в активной среде лазера. Формирующую оптику, состоящую из одной аксиально-симметричной линзы, рассчитывают так, чтобы ее эквивалентное фокусное расстояние удовлетворяло равенству , гдеD - размер области накачки, совпадающий с размером активной среды по оси распространения излучения генерации;θ - полная расходимость излучения на выходе из оптических волокон.Размер излучающей площадки волокон h по оси распространения излучения генерации выбирают из условия , гдеn - показатель преломления материала линз формирующей оптики,а размер излучающей площадки волокон d в направлении, перпендикулярном оси распространения излучения генерации, увеличивают за счет добавления рядов волокон, причем d≤h, при этом излучающую площадку располагают на расстоянии от передней главной плоскости формирующей оптики с образованием на расстоянии от задней главной плоскости формирующей оптики области накачки длиной , где располагают активную среду лазера. Техническим результатом является повышение выходных энергетических характеристик лазера. 5 з.п. ф-лы, 2 ил.

Устройство для передачи светового излучения большой мощности относится к квантовой электронике, в частности к технологическим лазерным устройствам. Устройство для передачи светового излучения большой мощности содержит заполненную теплоносителем камеру, ограниченную с торца прозрачным оптическим элементом, оптоволоконный жгут с полированным торцом, собранный из световодов, концевой участок которого установлен внутри камеры с помощью, по меньшей мере, двух фиксирующих элементов, один из которых обеспечивает плотную упаковку световодов на его приторцевой части, между соседними световодами имеются зазоры, образующие межволоконное пространство. Камера разделена на, по меньшей мере, две области, сообщающиеся через межволоконное пространство, первая область ограничена оптическим и фиксирующим элементами, а остальные ограничены соседними фиксирующими элементами, первая область снабжена установленным на стенке камеры штуцером для подачи теплоносителя, вторая область снабжена установленным на стенке камеры штуцером для откачки теплоносителя. При этом оптический элемент представляет собой плоскопараллельную пластину прямоугольной формы, размеры которой по высоте и ширине превосходят соответствующие размеры оптоволоконного жгута прямоугольного сечения, расположенную перпендикулярно оси оптоволоконного жгута, причем оптоволоконный жгут имеет плотную упаковку световодов на всей длине концевого участка. Технический результат - увеличение ресурса непрерывной работы устройства в условиях высокой передаваемой мощности за счет повышения эффективности охлаждения концевого участка оптоволоконного жгута и организации защиты приторцевой области жгута протоком теплоносителя. 9 з.п. ф-лы, 5 ил.

Активный элемент лазера на парах щелочных металлов содержит камеру с активной средой и оптические окна, прозрачные для лазерного излучения. В стенках камеры установлены трубчатые концевые секции, отделяющие оптические окна от стенок. Каждая концевая секция выполнена металлической с ребристой внутренней поверхностью и снабжена рубашкой охлаждения, охватывающей внешнюю поверхность секции. Внутри каждой секции установлены металлические диафрагмы с отверстиями, диаметр которых согласован с размером поперечного сечения пучка лазерного излучения. Активная среда представляет собой смесь по меньшей мере одного буферного газа и пара щелочного металла. Рубашка охлаждения секции содержит кольцевой канал, в котором обеспечена циркуляция хладагента (охлаждающей жидкости или газа). Технический результат - уменьшение вероятности оседания паров щелочных металлов на окнах кюветы и взаимодействия их с материалами окон и просветляющих покрытий. 2 з.п. ф-лы, 2 ил.

Изобретение относится к области лазерной локации. Лазерное устройство контроля околоземного космического пространства содержит установленные на первой оптической оси вспомогательный источник лазерного излучения, селектор угловых мод с первым зеркалом резонатора, задающий генератор рабочего лазерного излучения, полупрозрачное зеркало вывода излучения и второе зеркало резонатора. За зеркалом вывода установлены полностью отражающее зеркало, усилитель рабочего излучения, спектроделительное зеркало, первое и второе опорно-поворотные устройства (ОПУ). Отражающие поверхности зеркал ОПУ установлены встречно друг другу. За задней гранью спектроделительного зеркала расположены средства видеонаблюдения и контроля за положением удаленного объекта, а также оптико-электронное устройство для регистрации отраженного зондирующего излучения. На оптической оси, не совпадающей с первой, расположен локационный модуль, включающий последовательно установленные на оптической оси источник зондирующего лазерного излучения, средства формирования пространственного профиля и расходимости зондирующего излучения, полностью отражающую зеркальную систему транспортировки зондирующего излучения, третье и четвертое ОПУ, средства видеонаблюдения и контроля за положением удаленного объекта. Отражающие поверхности зеркал ОПУ установлены встречно друг другу. Также устройство содержит автоматизированную систему управления и контроля режимов работы, связанную с системой топогеодезической и временной привязки. Технический результат заключается в расширении объема контролируемого космического пространства. 13 з.п. ф-лы, 4 ил.

Изобретение относится к квантовой электронике

Изобретение относится к оптике и квантовой электронике и может быть использовано в лазерной локации, в системах наведения излучения, в системах управления волновым фронтом мощных технологических установок

 


Наверх