Патенты автора Акашев Лев Александрович (RU)

Изобретение относится к области предотвращения коррозии в водных растворах в промышленности и энергетике путем создания на поверхности металла защитной пленки. Способ включает создание на поверхности металла защитного покрытия, при этом для обработки поверхности металла берут водный раствор, содержащий 100-200 мг/л нитрилтриметиленфосфоновой кислоты и 8-16 мг/л оксида или соли цинка в пересчете на металл, обработку поверхности металла ведут в течение не менее 6 ч и до 24 ч для формирования защитного покрытия толщиной не менее 60 нм и до 420 нм. Технический результат: повышение эффективности коррозионной обработки путем создания защитного покрытия в виде пленки на металлической поверхности, в том числе металлической поверхности крупногабаритных деталей. 2 з.п. ф-лы, 2 табл.

Изобретение относится к области предотвращения коррозии в водных растворах в промышленности и энергетике путем создания на поверхности металла защитной пленки. Способ предотвращения коррозии металла в водных растворах ведут путем создания на поверхности металла защитного покрытия, при этом для обработки поверхности металла берут водный раствор, содержащий 100-200 мг/л нитрилтриметиленфосфоновой кислоты (НТФ) и 3-6 мг ионов магния (в пересчете на концентрацию металла), обработку поверхности металла ведут при нормальных условиях в течение не менее 6 часов для формирования защитного покрытия толщиной не менее 60 нм. Технический результат - повышение эффективности коррозионной обработки путем создания защитного покрытия в виде пленки на металлической поверхности, в том числе металлической поверхности крупногабаритных деталей. 2 з.п. ф-лы, 2 табл., 19 пр.

Изобретение относится к области нанесения защитных покрытий в металлургии и машиностроении. Способ получения наноразмерных пленок нитрида титана на подложке из кварцевого оптического стекла осуществляют следующим образом. Проводят термическое напыление путем резистивного испарения с использованием вольфрамового испарителя в виде проволоки с прикрепленной к ней навеской титана при остаточном давлении (1,3-2)·10-4 Па до полного её испарения. Толщину напыленного слоя определяют по математической формуле T=(M⋅sinθ)/(ρ⋅4⋅π⋅R2), где М - общая масса испаряемой навески титана, г, Т – толщина напыленной пленки титана, см, θ – угол наклона подложки к испарителю, град, ρ – плотность испаряемого титана, г/см3, R – расстояние от испарителя до подложки, см. Обработку в атмосфере чистого азота осуществляют при температуре 850-870°С и давлении 0,2–0,3 МПа в течение 40-90 мин. Обеспечивается получение пленок нитрида титана с толщиной в наноразмерном диапазоне для увеличения термостойкости и износостойкости изделий. 2 пр., 1 ил.

Использование: для определения ширины запрещенной зоны наноразмерных полупроводниковых и диэлектрических пленок. Сущность изобретения заключается в том, что способ определения оптической ширины запрещенной зоны наноразмерных пленок включает определение спектров эллипсометрического параметра ψ подложки с наноразмерной пленкой, нанесенной вакуумным напылением на подложку из неорганического материала, и подложки без пленки в зависимости от длины волны в видимом и ближнем УФ диапазоне, при этом определяют разность ψ ч –ψ, где ψ ч – эллипсометрический параметр подложки, ψ – эллипсометрический параметр подложки с нанесенной пленкой, в диапазоне исследуемого спектра волн излучения, строят график зависимости (( ψ ч -ψ)hυ)2 от hυ (эВ), где hυ – энергия фотонов, и путем экстраполяции прямой в высокоэнергетической части спектра находят точку пересечения с осью абсцисс. Технический результат: обеспечение возможности упрощения способа для определения ширины запрещенной зоны наноразмерных полупроводниковых и диэлектрических пленок. 8 ил.

Изобретение относится к области оптико-физических измерений, основанных на эллипсометрии, и предназначено для определения линейного коэффициента теплового расширения тонких прозрачных пленок. Способ определения линейного коэффициента теплового расширения тонкой прозрачной пленки, при котором производят измерения эллипсометрических параметров и при начальной и конечной температуре, с последующим определением толщины пленки при начальной и конечной температуре с учетом показателей преломления сред и расчётом коэффициента теплового расширения по известным формулам. При этом на аморфную кварцевую подложку путем вакуумного напыления наносят пленку, кроме того до нанесения пленки определяют оптические параметры и отраженного от поверхности подложки светового луча при начальной и конечной температуре, подложку с нанесенной пленкой помещают в водоохлаждаемую камеру, установленную внутри эллипсометра, конструкция которого обеспечивает определенный угол падения светового луча на поверхность системы пленка-подложка, и рассчитывают эллипсометрические параметры и , отраженного от поверхности системы пленка-подложка светового луча. Технический результат - определение линейного коэффициента теплового расширения тонкой прозрачной пленки толщиной менее 1 мкм. 1 ил.

Изобретение относится к способам оптико-физических измерений. Способ определения оптических констант пленок химически активных металлов или их сплавов включает измерения эллипсометрических параметров и пленки соответствующего металла или его сплава, предварительно нанесенной путем вакуумного напыления на подложку с последующим расчетом значений констант. Причем пленку толщиной 0,5-0,6 мкм наносят на внешнюю поверхность нижней грани треугольной 45-градусной призмы, выполненной из оптического стекла. При этом на наружную и боковую поверхность пленки наносят путем вакуумного напыления слой алюминия толщиной 0,5-1,0 мкм, а эллипсометрические параметры и определяют по формулам: , ,где ,— экспериментально измеренные значения эллипсометрических параметров, — минимальная эллиптичность отраженного света при угле Брюстера , выражаемая как ,где n0 =1 (воздух), n1 =1.51 (стекло), nсл, dсл– показатель преломления и толщина переходного слоя воздух - стекло соответственно. Технический результат заключается в возможности определения оптических постоянных тонких пленок химически активных металлов посредством метода эллипсометрии на воздухе. 2 ил.

Изобретение относится к измерительной технике, а именно к способам оптико-физических измерений, основанных на эллипсометрии, и предназначено для определения показателя преломления оптически прозрачных материалов. Предлагается способ определения показателя преломления оптически прозрачного материала путем измерения эллипсометрических параметров Δ и ψ с последующим их расчетом. При этом предварительно спрессованный нано- или ультрадисперсный порошок помещают в воздушную среду и определяют эллипсометрические параметры Δ и ψ на воздухе, а затем рассчитывают показатель преломления исследуемого спрессованного материала на воздухе (n1), после чего помещают исследуемый спрессованный материал в оптически прозрачную иммерсионную жидкость, обеспечивающую отсутствие химического взаимодействия и хорошую смачиваемость исследуемого материала, и определяют эллипсометрические параметры Δ и ψ в иммерсионной жидкости, а затем рассчитывают показатель преломления исследуемого спрессованного материала в иммерсионной жидкости (n2), после чего рассчитывают показатель преломления исходного нано- или ультрадисперсного порошка. Данное изобретение позволяет обеспечить возможность определения показателя преломления веществ, изначально находящихся в высокодисперсном порошковом состоянии. 1 ил.

Изобретение относится к области оптико-физических измерений, основанных на эллипсометрии, и предназначено для определения толщины тонких прозрачных пленок
Изобретение относится к области высокотемпературной электрохимии, в частности к получению электролизом нанокристаллических покрытий оксидных вольфрамовых бронз в виде пленок, и может быть использовано в медицине, электротехнике, радиотехнике и в химической промышленности для изготовления ион-селективных элементов для анализа микросред, электрохромных устройств, холодных катодов, катализаторов химических реакций

 


Наверх