Патенты автора Лотарев Сергей Викторович (RU)

Изобретение относится к области электротехники, в частности к технологии локального лазерно-индуцированного осаждения металлических структур на поверхность стекла и может быть использовано для создания токопроводящих контактов, микронагревателей и катализаторов в лабораториях на чипе, биомолекулярных сенсоров и миниатюрных датчиков поверхностно-усиленной рамановской спектроскопии. Технический результат - формирование золотых проводящих структур на стеклянной подложке непосредственно из раствора соли металла. Технический результат достигается тем, что способ локальной лазерно-индуцированной металлизации поверхности диэлектрика включает фокусировку лазерного излучения на границу раздела подложка-электролит стеклянной подложки, погруженной в кювету с раствором электролита. При этом используют излучение фемтосекундного лазера на длине волны 1030 нм, с длительностью импульсов 180÷600 фс, энергией импульсов 200÷800 нДж, частотой следования импульсов 200÷500 кГц, пучок которого пропускают через пространственный фильтр с двумя отверстиями ϕ=130° и θ=23° и фокусируют с помощью объектива с числовой апертурой 0,45÷0,65 снизу вверх на верхнюю поверхность диэлектрика и перемещают в плоскости поверхности подложки со скоростью 0,01÷1 мм/с однократно или с количеством проходов 2-100 с заглублением фокуса под поверхность подложки с шагом в 1÷5 мкм для каждого последующего прохода. В качестве раствора электролита применяют 4 М водный раствор HAuCl4, а в качестве диэлектрика - предметное стекло состава (масс. %) 72,2 SiO2, 14,3 Na2O, 1,2 K2O, 6,4 СаО, 4,3 MgO, 1,2 Al2O3, 0,03 Fe2O3, 0,3 SO3. 3 ил.

Изобретение относится к области оптического материаловедения, к способу модифицирования стекла в объеме под действием фемтосекундного лазерного излучения. Способ лазерного модифицирования стекла для записи информации включает локальное облучение стекла состава, мас.%: 3,85 CdS; 22,16 K2O; 19,27 ZnO; 3,86 B2O3; 50,86 SiO2 пучком фемтосекундного излучения ближнего ИК диапазона, сфокусированным через объектив с числовой апертурой 0,45-0.65, с формированием микрообластей, при этом записывают микрообласти, обладающие одновременно люминесценцией, в том числе частично-поляризованной, и поляризационно-зависимым двулучепреломлением, а для записи используют импульсы в количестве 5⋅103÷106 с линейной поляризацией, длительностью 180-900 фс, энергией 100÷600 нДж и частотой следования 50-200 кГц. Техническим результатом является формирование в стекле микрообластей, обладающих одновременно люминесценцией, в том числе частично-поляризованной, и поляризационно-зависимым двулучепреломлением, для повышения плотности записи информации. 2 ил.
Изобретение относится к области лазерной обработки материалов, в частности к способу лазерной записи интегральных волноводов, основанному на локальном изменении показателя преломления стеклокристаллического материала сфокусированным излучением фемтосекундного лазера. Заявленный способ записи интегральных волноводов, основанный на изменении показателя преломления прозрачного диэлектрика, включает фокусировку фемтосекундных лазерных импульсов в объем диэлектрика, движение сфокусированного пучка по заданной траектории и последовательную запись нескольких параллельных треков, ограничивающих область из немодифицированного материала. При этом в качестве прозрачного диэлектрика используют литиевоалюмосиликатный ситалл, а фемтосекундный лазер генерирует импульсы на длине волны 1030 нм, длительностью 180÷600 фс, с частотой следования 1÷100 кГц, энергией 200÷4000 нДж при перемещении сфокусированного лазерного пучка объективом с числовой апертурой 0,45÷0,65 со скоростью 200÷1000 мкм/с, с шагом между треками, формирующими цилиндрическую оболочку волновода, 3÷5 мкм. Технический результат – возможность лазерной записи цилиндрической оболочки волновода с пониженным показателем преломления в объеме прозрачной стеклокристаллической матрицы. Полученный результат может быть использован для создания волноводных устройств ИК оптики, в том числе термостабильных интегральных оптических схем.

Изобретение относится к области оптического материаловедения, в частности к способу равномерного объемного окрашивания оксидных стекол и ситаллов путем термообработки, и может быть использовано для изготовления ювелирных изделий на основе стекла или ситалла с контролируемой широкой цветовой гаммой, оптических фильтров видимого диапазона и др. Способ равномерного объемного окрашивания прозрачного материала на основе стекла включает синтез ситаллизирующегося стекла в магниевоалюмосиликатной системе с добавкой хлорида золота и проведение термической обработки синтезированного стекла, при этом термическую обработку синтезированного стекла проводят в интервале температур 750-875°С в течение 20 ч. Исходное стекло имеет следующий состав, мас.%: АuСl3 0,005-0,01, SnO2 1,395-1,59, Na2O 1,50-1,60, ZrO2 4,20-4,90, ТiO2 6,50-7,00, MgO 5,00-7,00, ZnO 13,00-15,30, Al2O3 22,00-25,00, SiO2 40,00-44,00. Техническим результатом изобретения является получение прозрачного материала на основе стекла с равномерной объемной окраской в ряду: бирюзовая, сине-голубая, фиолетовая, красная. 5 пр., 2 ил.
Изобретение относится к способу прецизионного бесклеевого соединения прозрачных диэлектриков с металлами, основанному на локальном размягчении и сварке стекол с металлами под действием сфокусированного излучения лазера. Осуществляют фокусировку фемтосекундных лазерных импульсов вблизи поверхности раздела свариваемых материалов и перемещение сфокусированного пучка по заданной траектории. В качестве лазера используют фемтосекундный лазер, генерирующий импульсы в ближнем ИК диапазоне, длительностью 180÷1200 фс, с частотой следования 200÷1000 кГц, энергией 200÷1500 нДж. Фокусировку выполняют асферической линзой с числовой апертурой 0,16÷0,65 в область контакта материалов и перемещают в плоскости контакта материалов со скоростью 0,5÷1 мм/с. В качестве прозрачного диэлектрика используют кварцевое стекло или литиевоалюмосиликатный ситалл, а в качестве металла инварный сплав 64Fe36Ni. Сварной шов представляет собой серию параллельных треков с шагом 10÷100 мкм между треками. Технический результат изобретения состоит в создании прочного термостойкого соединения прозрачных диэлектриков с металлами. 4 пр.

Изобретение относится к области оптического материаловедения, в частности к люминесцирующим стеклокристаллическим материалам. Техническим результатом изобретения является получение ситалла со стабильной величиной ТКЛР, близкой к нулю, в широком диапазоне температур от -100 до +400°С, обладающего люминесценцией в ближней ИК области. Люминесцирующий ситалл содержит компоненты при следующем соотношении, мол.%: SiO2 60-65, Al2O3 14-18, Li2O 10-13, Р2О5 1-5, MgO 1-2,5, ZnO 0,1-0,5, CaO 0,2-1, BaO 0,5-2, TiO2 1-4, ZrO2 0,5-2,5, As2O3 0,1-0,5, Sb2O3 0,1-0,5, Nd2O3 0,1-3 (сверх 100%). 4 пр.

Изобретение относится к области оптического материаловедения, в частности к оптическому носителю информации на основе оксидных стекол, и может быть использовано для записи и хранения информации. Изобретение позволяет упростить и удешевить технологический процесс изготовления оптического носителя информации при сохранении скорости записи информации. Это достигается применением оптического носителя информации на основе многокомпонентных оксидных стекол составов, мол. %: Me2O (Me=Li, Na, K) в количестве 12-30, SiO2 в количестве 70-88; или состава: Me2O (Me=Li, Na, K) в количестве 5-30, Al2O3 в количестве 0,1-5, SiO2 в количестве 65-87,9; или состава: Me2O (Me=Li, Na, K) в количестве 4-25, Al2O3 в количестве 2-5, В2О3 в количестве 5-13, SiO2 в количестве 65-81.

Изобретение относится к области оптического материаловедения, в частности к способу записи информации на носитель из нанопористого кварцоидного стекла под действием лазерного излучения. Изобретение позволяет увеличить скорость записи информации, осуществляемой наведением поляризационно-зависимого двулучепреломления, в нанопористом кварцоидном стекле. Это достигается способом записи информации за счет наведения поляризационно-зависимого двулучепреломления путем модифицирования нанопористого кварцоидного стекла сфокусированным пучком лазера ближнего ИК диапазона со сниженным числом импульсов со 100 до 3, повышенной частоте следования импульсов до 10 МГц при длительности импульсов 150-220 фс с использованием объектива с числовой апертурой в диапазоне 0,65-0,9. 2 ил.

Изобретение относится к области оптического материаловедения, в частности, к способу записи информации на носитель из кварцевого стекла под действием лазерного излучения. Запись производится за счет наведения поляризационно-зависимого двулучепреломления путем модифицирования кварцевого стекла сфокусированным пучком лазера, при этом лазер работает в инфракрасном диапазоне, излучая фемтосекундные импульсы. Энергия импульсов находится в диапазоне 20-30 нДж, при этом используется объектив с числовой апертурой 0,45-0,9. Изобретение позволяет увеличить скорость записи информации в кварцевом стекле. 3 з.п. ф-лы, 2 ил.

Изобретение относится к области прецизионной микрообработки материалов, в частности к способу резки стекол при помощи гребенки лазерных импульсов фемтосекундной длительности, и может быть использовано для прецизионной резки стекла на предприятиях и в научно-исследовательских центра. Способ резки стекла включает формирование гребенки фемтосекундных лазерных импульсов, характеризующейся межимпульсным интервалом, создание данными гребенками линии из дефектов структуры стекла в объеме стекла и разлом стекла. Гребенку фемтосекундных лазерных импульсов формируют с помощью интерферометра, а межимпульсный интервал, определяемый толщиной интерферометра, составляет 10-70 пс. Изобретение позволяет ускорить процесс резки стекла за счет уменьшения количества стадий. 4 пр., 1 ил.

Изобретение относится к способу модифицирования структуры стекла под действием лазерного пучка для формирования люминесцирующих микрообластей. Фосфатное стекло, содержащее ионы серебра, локально облучают фемтосекундными лазерными импульсами с длиной волны в ближнем инфракрасном диапазоне, с энергией лазерных импульсов в пределах 30-200 нДж, длительностью лазерных импульсов в пределах 300-1200 фс, частотой следования лазерных импульсов в пределах 1-500 кГц. Для фокусировки лазерного пучка применяют объектив с числовой апертурой 0,4-0,9. Технический результат – повышение плотности записи информации с использованием параметров люминесценции и двулучепреломления микрообластей. 4 ил., 3 пр.

Изобретение относится к способу локальной нанокристаллизации оксидных стекол под действием лазерного излучения. Стекло состава ВаО 35-45 мол.%, ТiO2 10-20 мол.%, SiO2 40-50 мол.% облучают сфокусированным фемтосекундным пучком лазера, генерирующего на длине волны 1030 нм импульсы с частотой 100-500 кГц длительностью 300 фс и с энергией 0,5-1,5 мкДж. Лазерный пучок, сфокусированный объективом с числовой апертурой 0,45-0,65, перемещают относительно стекла в скоростном интервале 500-1000 мкм/с. Изобретение позволяет локально формировать в объеме бариевотитаносиликатных стекол протяженные нанокристаллические структуры длиной не менее 200 мкм и регулируемой шириной, обладающие генерацией второй гармоники. 3 ил.

Изобретение относится к способу локальной кристаллизации стекол под действием лазерного пучка. Локальную кристаллизацию стекол лантаноборогерманатной системы, легированных неодимом, проводят с помощью импульсного фемтосекундного лазера, перемещающегося относительно стекла со скоростью 10-50 мкм/с на глубине от 100 мкм. Частоту следования фемтосекундных импульсов задают в пределах 25-100 кГц, а среднюю мощность - в пределах 0,1-1,2 Вт. Используют стекло следующего состава, мол.%: La2O3 14,9-26, В2O3 23-26, GeO2 49-52, Nd2O3 0,1-10. Технический результат – получение однородных кристаллических линий со встроенными в кристаллическую решетку ионами неодима в объеме стекла. 5 ил., 3 пр.

Изобретение относится к области оптического материаловедения, в частности к конвертеру поляризации лазерного излучения. Оксидное стекло обрабатывают сфокусированным лазерным пучком. Варку стекла проводят при температурах от 1650 до 1700°C. Состав стекла следующий, в мол.%: MgO 5-10, CaO 5-10, B2O3 5-10, Al2O3 15-20, SiO2 55-65. Технический результат – упрощение технологии, снижение величины стандартного отклонения величины фазового сдвига нанорешетки. 2 пр., 1 ил.

Изобретение относится к области оптического материаловедения. Технический результат – получение однородных кристаллических линий в объеме стекла. Локальная кристаллизация стекол проходит под действием фемтосекундного лазерного излучения. Пучок лазера пропускают через призматический телескоп или цилиндрическую линзу до фокусирующего объектива, тем самым получая перетяжку с эллиптическим поперечным сечением, имеющим соотношение большой и малой осей не менее 2:1 и с ориентацией длинной оси эллипса вдоль направления роста кристалла. Стекла имеют следующий состав, мол.%: La2O3 23-26, В2О3 23-26, GeO2 49-52 или La2O3 20,9-26, В2O3 23-27, GeO2 49-52, Nd2O3 0,1-3. Пучок перемещают относительно стекла со скоростью 10-50 мкм/с и энергией импульса лазерного излучения в пределах 0,5-2,5 мкДж. 6 ил., 3 пр.

Изобретение относится к области оптического материаловедения, в частности к способу выращивания микрокристаллических каналов в прозрачных и окрашенных стеклах под действием лазерного пучка для задач интегральной оптики. Изобретение позволяет получить кристаллические линии с помощью фемтосекундного лазера в лантаноборогерманатном стекле с пониженной частотой следования импульсов. Это достигается способом локальной кристаллизации лантаноборогерманатного стекла, включающим облучение сфокусированным в объем стекла пучком фемтосекундного лазера, которое состоит из двух этапов: этапа формирования кристаллической затравки неподвижным пучком и этапа вытягивания кристаллической линии из затравки пучком, который перемещают с постоянной скоростью. При этом частоту следования фемтосекундных импульсов задают в пределах 9-100 кГц для формирования затравки и задают частоту 5-100 кГц для формирования кристаллической линии, энергию импульса изменяют от 16 до 120 мкДж, глубину фокусировки пучка варьируют от 50 до 300 мкм. Образец помещают в печь и проводят облучение сфокусированным пучком лазера стекла состава, мол. %: La2O3 24,5-25,5, В2O3 24,5-25,5, GeO2 49,5-50,5. 5 ил., 3 пр.

Изобретение относится к области оптического материаловедения, в частности к способу локальной кристаллизации легированных стекол под действием лазерного излучения. Техническим результатом изобретения является осуществление возможности кристаллизации стекла. Способ локальной микрокристаллизации оксидных стекол осуществляют с использованием стекла с легирующей добавкой Nd2O3 в концентрации от 0,3 до 3%(мол.). Применяют импульсный лазер на парах меди, генерирующий одновременно желтую и зеленую линии с суммарной средней мощностью от 5 до 15 Вт, частотой следования импульсов до 12,8 кГц. Пучок лазера перемещают относительно образца, помещенного в печь и нагретого до температуры на 10-150°C ниже температуры стеклования выбранных составов стекол в мол. %, а именно: La2O3 22-24,7, В2О3 24,5-25,5, GeO2 49,5-50,5, Nd2O3 0,3-3 или Li2O 23,7-25,3, В2О3 24,3-25,8, GeO2 49,2-50,7, Nd2O3 1-3 (сверх 100%) или Li2O 29,8-30,3, Nb2O3 24,7-25,5, SiO2 44,5-45,8, Nd2O3 1,5-3 (сверх 100%). 3 ил., 4 пр.
Изобретение относится к области оптического материаловедения, в частности к наноструктурированному поляризованному стеклу и способу его получения

 


Наверх