Патенты автора Куликов Станислав Михайлович (RU)

Изобретение относится области адаптивной оптики и может быть использовано для локации с земли движущихся космических объектов. В способе компенсации атмосферных искажений, вносимых турбулентной атмосферой в оптический сигнал, получаемый от наблюдаемого космического тела (КТ), осуществляют визуализацию и автосопровождение КТ, формируют на заданном упреждении в поле зрения системы визуализации искусственный опорный источник - натриевую оптическую звезду (НЗ) с помощью лазера, направляют регистрируемый оптический сигнал от КТ и НЗ на адаптивную оптическую систему (АОС), и через селективный оптический элемент отводят сигнал НЗ на регистратор. Передача сигнала происходит в два этапа, на первом сигнал проходит АОС без внесения ею дополнительных искажений, а на втором этапе с помощью АОС вносят поправки в волновой фронт регистрируемого сигнала, организуют замкнутый цикл работы АОС по обратной связи с помощью сигнала НЗ на регистраторе, затем о выполнении компенсации судят по достижению плоского волнового фронта. Также на втором этапе компенсацию искажений осуществляют путем апертурного зондирования НЗ с помощью АОС, работающей по алгоритму нахождения максимума целевой функции, которой соответствует число зарегистрированных фотонов, прошедших через диафрагму дифракционного размера, при котором обратная связь осуществляется по регистратору, в качестве которого применяют счетчик фотонов, а в качестве рабочего сигнала принимают число фотонов, причем о достижении плоского волнового фронта судят по максимуму целевой функции. Технический результат заключается в упрощении процесса компенсации. 1 ил.

Изобретение относится к лазерной технике. В способе поперечной накачки рабочей среды лазера, включающем передачу излучения от диодных источников накачки в рабочую среду лазера с помощью оптических волокон, плотно упакованных на концевом участке с образованием излучающей площадки размером d×h, где d≤h, h - размер излучающей площадки волокон по оси распространения излучения генерации d - размер излучающей площадки волокон перпендикулярно оси распространения излучения генерации, и формирующей оптики, которая создает поле накачки лазера на пересечении пучка накачки и рабочей среды лазера, которая располагается в пространстве между формирующей оптикой и плоскостью действительного изображения излучающей площадки, причем дальнюю границу рабочей среды совмещают с этой плоскостью, формирующую оптику выполняют из двух компонентов. Первый из компонентов представляет собой аксиально-симметричную линзу, формирующую мнимое изображение излучающей площадки, причем линзу располагают на минимальном расстоянии L от излучающей площадки, определяют ее фокусное расстояние как где θ - полная расходимость излучения на выходе из оптических волокон. Второй компонент устанавливают в задней фокальной плоскости первой линзы и определяют его фокусное расстояние как где D - размер поля накачки, совпадающий с размером рабочей среды по оси распространения излучения генерации, при этом на расстоянии от задней фокальной плоскости второго компонента формирующей оптики строится действительное изображение излучающей площадки, где - расстояние от излучающей площадки до ее мнимого изображения. Технический результат заключается в уменьшении габаритов формирующей оптики при создании высокой интенсивности накачки в среде лазера. 3 з.п. ф-лы, 1 ил.

Изобретение относится к лазерной технике. Способ поперечной накачки активной среды лазера включает передачу излучения от диодных источников накачки с помощью оптических волокон, плотно упакованных на концевом участке в ряд, с расположением всех торцов волокон в одной плоскости, образующей излучающую площадку. Формирующая оптика создаёт область накачки лазера на пересечении пучка накачки и излучения генерации в активной среде лазера. Формирующую оптику, состоящую из одной аксиально-симметричной линзы, рассчитывают так, чтобы ее эквивалентное фокусное расстояние удовлетворяло равенству , гдеD - размер области накачки, совпадающий с размером активной среды по оси распространения излучения генерации;θ - полная расходимость излучения на выходе из оптических волокон.Размер излучающей площадки волокон h по оси распространения излучения генерации выбирают из условия , гдеn - показатель преломления материала линз формирующей оптики,а размер излучающей площадки волокон d в направлении, перпендикулярном оси распространения излучения генерации, увеличивают за счет добавления рядов волокон, причем d≤h, при этом излучающую площадку располагают на расстоянии от передней главной плоскости формирующей оптики с образованием на расстоянии от задней главной плоскости формирующей оптики области накачки длиной , где располагают активную среду лазера. Техническим результатом является повышение выходных энергетических характеристик лазера. 5 з.п. ф-лы, 2 ил.

Способ когерентного сложения включает в себя разделенное на каналы лазерное излучение, направленное на соответствующие каналам фазовые модуляторы. После прохождения фазовых модуляторов все каналы выставляют параллельно друг другу, при этом волновой фронт в каждом канале делают плоским. Часть многоканального излучения отводят и фокусируют на фотоприемник для регистрации сигнала. Подачу управляющих напряжений на фазовые модуляторы производят в два этапа, один пробный и один корректирующий. Причем значения управляющих напряжений, подаваемых на корректирующем этапе, пропорциональны параметру, контролирующему скорость сходимости, изменению сигнала с фотоприемника на пробном этапе и управляющим напряжениям, подаваемым на фазовые модуляторы на пробном этапе. При этом параметр, контролирующий скорость сходимости, обратно пропорционален значению сигнала с фотоприемника на пробном этапе, а коэффициент пропорциональности обратно пропорционален квадрату амплитуды фазовых сдвигов на пробном этапе. Технический результат заключается в получении когерентного оптического сигнала путем сложения нескольких лазерных пучков без измерения абсолютных и относительных фаз в каналах при уменьшении времени когерентного сложения лазерных пучков. 4 ил.

Изобретение относится к лазерной технике. Лазер на парах щелочных металлов с диодной накачкой содержит лазерную камеру с внутренней полостью с прозрачными торцевыми окнами, замкнутый герметичный контур для циркуляции активной среды, проходящий через внутреннюю полость камеры в направлении, поперечном к оптической оси камеры, источник излучения накачки на основе лазерных диодов и оптические средства формирования и фокусировки излучения накачки во внутреннюю полость камеры. Активная среда представляет собой смесь из буферного газа и пара щелочного металла. Источник излучения накачки расположен со стороны торцевого окна лазерной камеры таким образом, что направление формируемого им излучения накачки ориентировано продольно направлению оптической оси камеры. Оптические средства формирования и фокусировки излучения накачки выполнены и установлены с обеспечением построения в активной среде в одной и той же плоскости, поперечной оптической оси камеры, изображения излучающей зоны источника излучения накачки в направлении ее короткой стороны и Фурье-изображения излучающей зоны источника излучения накачки в направлении ее длинной стороны. Технический результат заключается в обеспечении более эффективного преобразования энергии накачки в лазерную энергию и в повышении КПД лазера. 4 з.п. ф-лы, 3 ил.

Изобретение относится к области лазерной локации. Лазерное устройство контроля околоземного космического пространства содержит установленные на первой оптической оси вспомогательный источник лазерного излучения, селектор угловых мод с первым зеркалом резонатора, задающий генератор рабочего лазерного излучения, полупрозрачное зеркало вывода излучения и второе зеркало резонатора. За зеркалом вывода установлены полностью отражающее зеркало, усилитель рабочего излучения, спектроделительное зеркало, первое и второе опорно-поворотные устройства (ОПУ). Отражающие поверхности зеркал ОПУ установлены встречно друг другу. За задней гранью спектроделительного зеркала расположены средства видеонаблюдения и контроля за положением удаленного объекта, а также оптико-электронное устройство для регистрации отраженного зондирующего излучения. На оптической оси, не совпадающей с первой, расположен локационный модуль, включающий последовательно установленные на оптической оси источник зондирующего лазерного излучения, средства формирования пространственного профиля и расходимости зондирующего излучения, полностью отражающую зеркальную систему транспортировки зондирующего излучения, третье и четвертое ОПУ, средства видеонаблюдения и контроля за положением удаленного объекта. Отражающие поверхности зеркал ОПУ установлены встречно друг другу. Также устройство содержит автоматизированную систему управления и контроля режимов работы, связанную с системой топогеодезической и временной привязки. Технический результат заключается в расширении объема контролируемого космического пространства. 13 з.п. ф-лы, 4 ил.

Изобретение относится к подрывной технике, а именно к инициирующим устройствам. Система инициирования содержит детонатор, детонационный распределитель с приемными точками и каналами разводки, заряд взрывчатого вещества, элементы крепления. Между распределителем и элементами крепления имеется преграда с пазами и толщиной 1-10 мм. Между преградой и зарядом имеется газовый зазор величиной 0,1-10 мм. Изобретение позволяет производить равномерно распределенный подрыв по всей длине заряда. 4 з.п. ф-лы, 1 ил.

Изобретение относится к квантовой электронике

 


Наверх