Патенты автора Немировский Михаил Семенович (RU)

Изобретение относится к области биотехнологии, в частности к ферментерам для культивирования биомассы метанокисляющих микроорганизмов Methylococcus capsulatus, используемой в процессе получения корма, который используется в животноводстве, птицеводстве и рыбном хозяйстве. Ферментер для культивирования биомассы метанокисляющих микроорганизмов Methylococcus capsulatus содержит две и более соосно размещенные по высоте реакционные камеры (1, 2) в цилиндрическом корпусе ферментера (7). Внутри каждая камера содержит циркуляционные трубы (8, 9), внизу которых установлены барботеры для ввода кислородсодержащего газа (5) и природного газа (4). В каждой камере под циркуляционными трубами (8, 9) выполнена поперечная перегородка (6) с соплами (3). Причем сопла размещены так, что оси сопел совпадают с соответствующими им циркуляционными трубами и направлены сужением вверх. Диаметр сужения каждого сопла меньше внутреннего диаметра соответствующей циркуляционной трубы. Над верхним обрезом каждой циркуляционной трубы установлены профилированные дефлекторы (10), направленные меньшим диаметром вниз. В каждой реакционной камере высота торцевого зазора между циркуляционной трубой и расположенной под ней поперечной перегородкой (6) с соплами (3) и над ней дефлекторами (10) составляет 0,35-0,8 наружного диаметра циркуляционных труб. В нижней камере ферментера установлены патрубки жидкостных технологических потоков (11, 12, 13, 14), а в верхней камере - патрубок вывода образовавшейся газожидкостной смеси (15). Изобретение обеспечивает получение технического результата, заключающегося в повышении эффективности процесса получения белковой массы в реакционном объеме аппарата гомогенной, мелкодисперсной газожидкостной среды за счет исключения застойных зон и повышения скорости массообменных процессов в системе газ - жидкость - клетки при одновременном снижении удельных энергозатрат. 2 пр., 3 ил.

Изобретение относится к смешивающим устройствам и может быть применено для смешения потоков текучей среды, в частности газов или жидкостей, в различных отраслях промышленности и преимущественно в нефтепереработке и нефтехимии, газовой и энергетической промышленности. Смешивающее устройство для потоков текучей среды содержит камеру смешения, соединенные с ней по меньшей мере две коаксиально размещенные цилиндрические трубы, по которым потоки текучей среды поступают на смешение, завихритель, установленный по меньшей мере в одной из труб, и штуцер для вывода смеси, диаметр камеры смешения более чем в 1,7 раза превышает диаметр внешней из труб, а соотношение между длиной камеры смешения и ее диаметром больше или равно 1,5. При этом завихритель установлен с возможностью подвода закрученного потока на вход камеры смешения с интенсивностью, определяемой из отношения момента количества движения потока текучей среды к осевому количеству движения потоков на входе в камеру смешения, которое равно или больше 0,7. Техническим результатом изобретения является повышение эффективности смешения подаваемых потоков текучей среды. 3 ил.

Изобретение может быть использовано в химической промышленности. Способ получения серы из сероводородсодержащего газа методом Клауса включает термическую стадию и, по меньшей мере, одну стадию каталитической конверсии. Технологический газ подают в каталитический реактор 1, где его подогревают, а затем подвергают каталитической обработке в слое катализатора. Подогрев технологического газа происходит путем его смешения с продуктами сгорания, поступающими из встроенной в реактор фор-камеры 5 с горелочным устройством 4 для сжигания кислого и/или топливного газа. Каталитическую обработку смешанного газа ведут путем фильтрации через горизонтальный слой катализатора 13. Cмешанный газ подают через стабилизирующее устройство 12 с возможностью поршневого движения вдоль оси аппарата и равномерной фильтрации по всему сечению катализатора. Каталитический реактор 1 выполнен в виде цилиндрического аппарата с зоной подогрева технологического газа 2 и каталитической зоной 3, расположенными последовательно по ходу газа. Изобретение позволяет снизить потери при извлечении серы, а также выбросы диоксида серы в атмосферу, увеличить срок службы катализатора. 2 н. и 3 з.п. ф-лы, 2 ил., 1 табл., 1 пр.

Изобретение относится к способу получения элементной серы из отходящего газа, содержащего диоксид серы. Способ включает концентрирование диоксида серы, частичное высокотемпературное восстановление концентрированного диоксида серы концентрированным водородом до серы, сероводорода и воды, конденсацию образованных паров серы с выводом жидкой серы в сборник серы. Далее ведут переработку вышедшего технологического газа путем каталитической Клаус-конверсии, и последующую очистку хвостового газа, содержащего остаточные количества H2S, SO2, N2 и паров воды. При этом часть потока концентрированного диоксида серы отводят по байпасной линии, минуя стадии высокотемпературного восстановления, конденсации серы и каталитической конверсии, а вышедший из каталитической ступени Клаус-конверсии хвостовой газ вводят в узел гидрирования. Газ после гидрирования, состоящий из H2S, H2 и паров воды, подают в конденсационную колонну для отделения воды. Обезвоженный газ смешивают с байпасным потоком концентрированного диоксида серы и смесь направляют на дополнительную каталитическую ступень Клаус-конверсии, остаточные газы после которой возвращают на вход любой каталитической ступени, предшествующей узлу гидрирования. Техническим результатом является повышение эффективности утилизации отходящего газа. 7 з.п. ф-лы, 2 ил., 1 пр.

Изобретение относится к области химии и может быть использовано для управления процессом восстановления кислородсодержащих сернистых газов с получением элементарной серы в цветной металлургии, химической и нефтеперерабатывающей промышленности. Способ управления процессом восстановления сернистых дымовых газов природным газом в присутствии дополнительного кислорода, включающий переработку дымовых газов с получением серы в термической и, по меньшей мере, одной каталитической ступенях, предусматривает регулирование расхода природного газа и общего расхода кислорода в термическую ступень, исходя из предварительно установленной эмпирической функциональной зависимости между значениями концентраций компонентов хвостового газа, расходов компонентов дымового газа и температуры в камере термического реактора. Для этого замеряют текущее значение температуры в камере термической ступени, определяют объемный расход O2 и N2 в дымовом газе и концентрацию H2S, COS и SO2 в хвостовом газе и рассчитывают поправочные коэффициенты, на основании которых одновременно корректируют расход природного газа и расход кислорода в термическую ступень. Причем расход кислорода определяют как разность между расчетным расходом общего кислорода и тем расходом кислорода, который поступает с дымовым газом. 1 ил., 2 табл.
Изобретение относится к области химии и может быть использовано в процессах получения серы из дымовых газов, содержащих диоксид серы, на предприятиях химической, нефтехимической, газоперерабатывающей и металлургической промышленности

Изобретение относится к области химии и может быть использовано для получения элементной серы из отходящего газа, содержащего диоксид серы, на предприятиях химической, нефтехимической, газоперерабатывающей и металлургической промышленности

 


Наверх