Патенты автора Георгиевский Николай Владимирович (RU)

Изобретение относится к области информационных технологий, а именно к способу долгосрочного прогнозирования индивидуального ресурса гидроагрегата в условиях часто меняющихся режимных факторов. Технический результат заключается в повышении надежности и безопасности ГЭС в процессе длительной эксплуатации за счет повышения надежности работы гидроагрегата и снижения риска аварийных ситуаций, а также снижении расходов на обслуживание гидроагрегатов за счет увеличения точности и глубины прогноза. Способ долгосрочного прогнозирования индивидуального ресурса гидроагрегата в условиях часто меняющихся режимных факторов включает сбор и анализ имеющейся технической документации на гидроагрегат, в том числе проектных и фактических параметров эксплуатации, анализ результатов ранее выполненных технических диагностирований, включая определение конфигурации, размеров и положения неустраненных дефектов, не препятствующих дальнейшей эксплуатации, определение количества циклов нагружения, расчет фактически исчерпанного и остаточного ресурса по критерию усталостной прочности, при этом прогнозирование индивидуального остаточного ресурса гидроагрегата проводят в терминах накопленного суммарного повреждения. 3 з.п. ф-лы, 5 ил.

Изобретение относится к области контроля состояния технических объектов на базе периодических освидетельствований, в частности к способам оценки фактического состояния и остаточного ресурса рабочих колес гидротурбин в условиях эксплуатации. В способе оценки остаточного ресурса рабочего колеса гидротурбины на запроектных сроках эксплуатации, включающем получение аналитической информации, построение расчетной модели, остаточный ресурс рабочего колеса гидротурбины определяют на основе индивидуального прогнозирования развития трещин в условиях фактической эксплуатации, полученная аналитическая информация включает данные конструкторской документации и результаты проведенного технического освидетельствования состояния рабочего колеса во время эксплуатации, в том числе выполнение замеров геометрических параметров на натурном рабочем колесе гидротурбины с учетом размера и положения обнаруженных дефектов и кавитационных повреждений, толщин элементов гидротурбины, особенно лопастей рабочего колеса с учетом разнотолщинности, радиусов галтельных переходов в зоне перехода пера лопасти во фланец для поворотно-лопастных турбин и в зоне приварки лопасти к ободу и ступице для радиально-осевых турбин, угла установки лопастей, расстояния в свету между идентичными точками лопастей, а также изменения геометрических размеров в результате проведенных ремонтных операций, расчетная модель строится на основе полученной аналитической информации и представляет собой цифровой двойник рабочего колеса гидротурбины, разбитый на конечные элементы, определяют условный предел усталости материала с учетом влияния водной среды для N циклов нагружения в условиях коррозионно-активной среды по формуле где a, b - характеристики материала, которые зависят от числа циклов нагружения,для каждого эксплуатационного режима последовательно определяют:- величины статической и динамической составляющих внешних нагрузок,- напряженно-деформированное состояние рабочего колеса гидротурбины с учетом локальной концентрации напряжений в зонах галтельных переходов, резьбовых участков, а также в области вершины трещины, размер и положение которой обнаружены ранее,- коэффициенты запаса материала по усталостной прочности с учетом коэффициентов влияния металлургических дефектов и коэффициентов, учитывающих асимметрию цикла,- по найденному коэффициенту запаса по усталостной прочности материала определяют повреждаемость λσ(i) как отношение допускаемого значения коэффициента запаса по усталостной прочности материала к соответствующему расчетному значению, а суммарную повреждаемость λσ определяют как сумму повреждаемостей λσ(i): где i - номер эксплуатационного режима, m - общее количество режимов, затем определяют критерий предельного состояния, при этом признаком исчерпания ресурса является достижение расчетного значения суммарной повреждаемости λσ предельно допустимой величины [λσ]=1, определяют коэффициент интенсивности напряжений в вершине трещины с помощью методов линейной механики разрушений численными и аналитическими способами в условиях фактической эксплуатации, определяют зависимость скорости роста трещины от величины размаха коэффициента интенсивности напряжений, при этом расчет длины трещины проводится в соответствии с известным эмпирическим уравнением Пэриса, определяют нижнюю и верхнюю границы ресурса работы рабочего колеса, где нижняя граница соответствует пороговому значению длины трещины, определяющему возможность быстрого роста трещин под влиянием высокочастотных нагрузок малой амплитуды, а верхняя - определяется предельно допустимой длиной трещины, соответствующей ресурсному отказу, в результате остаточный ресурс работы рабочего колеса гидротурбины определяют в терминах длины трещин как разность предельно допустимой длины трещины и фактически обнаруженной. 5 з.п. ф-лы, 2 ил.

Изобретение может быть использовано в нефтеперерабатывающей и топливной промышленности и относится к формованию углеродсодержащего материала – сырого нефтяного кокса. Нагревание мелких фракций нефтяного кокса до температур 350-400°С ведут при ограниченном доступе кислорода воздуха в потоке газа с температурой 500-550°С, содержащего не более 2-6% кислорода. Указанный газ представляет собой смесь газов, отходящих из печи дожига летучих веществ, и коксовой пыли после вращающейся барабанной печи прокаливания и газов, выходящих из котла-утилизатора. Объемное соотношение указанных газовых потоков в смеси находится в диапазоне от 0,69 до 0,92. При этом достигается упрощение технологического процесса за счет формования сырого нефтяного кокса без связующих добавок во всем диапазоне атомарных соотношений С:Н, характерном для сырого нефтяного кокса. 1 табл.

Изобретение относится к теплотехнике и может быть использовано в теплообменных аппаратах, например, для подогрева технологических газов преимущественно, в производстве азотной кислоты

 


Наверх