Патенты автора Хамизов Султан Хажсетович (RU)

Изобретения могут быть использованы в сельском хозяйстве в технологии получения растворов минеральных удобрений, используемых для фертигации - орошения и одновременного внесения удобрений при возделывании сельскохозяйственных культур. Способ и установки для его осуществления включают переработку исходной воды в трех последовательно расположенных ионообменных колоннах - двух с катионитом (К3, К1) в форме катионного компонента получаемого удобрения и одной (К2) -в форме анионного компонента. Раствор с выхода второй по ходу потока катионитной колонны (К1) разделяют на две части. Одну часть направляют в анионитную колонну (К2) с получением на ее выходе раствора сложного минерального удобрения, а другую - в опреснитель (ОПР) для получения одновременно с удобрением обессоленной воды для приготовления фертигационного раствора. Солевой концентрат после опреснения, собираемый в емкости (Е1) используют для регенерации катионита в колонне (К1), а регенерат этой колонны используют для регенерации колонны (К3). В колонне (К2) регенерацию осуществляют с использованием раствора соли, содержащей анионный компонент получаемого удобрения. Варианты установки отличаются схемами сохранения и повторного использования регенерирующего раствора, вытесняемого из свободного объема колонн. В одном варианте используют общую емкость для подаваемого извне и вытесняемого регенерирующего раствора, а в другом - две отдельные. Установки содержат три ионообменных узла, имеющих каждый одну или пару одинаковых колонн, одну или две указанных емкости, а также два или три переключателя потоков, обеспечивающих работу установок, в том числе вытеснение в сочетании с режимом неполной регенерации ионитов. Изобретения обеспечивают возможность использования низкосортных исходных удобрений с предотвращением попадания агротехнически вредных компонентов в получаемое сложное удобрение, исключают нарушение работы опреснителя и уменьшают объем сбросных растворов. 3 н. и 21 з.п. ф-лы, 9 ил., 9 табл., 9 пр.

Изобретение относится к области химической технологии, а именно к аппарату для проведения ионообменных процессов. Ионообменный аппарат 10 содержит первый насос 14.1, вход которого является входом ионообменного аппарата 10, ионообменную колонну 1 с ионитной загрузкой, устройство 2 для отделения твердой фазы суспензии, получаемой в процессе ионного обмена, промежуточную емкость 3, второй насос 14.2 и средства коммутации входящих и выходящих потоков в виде первого 15.1, второго 15.2 и третьего 15.3 запорных элементов. При этом выходы первого насоса 14.1 и второго насоса 14.2 соединены друг с другом, соответственно, через первый 15.1 и второй 15.2 запорные элементы, имеющие общее соединение с нижним патрубком ионообменной колонны 1, выход второго насоса 15.2 имеет соединение с выходом ионообменного аппарата 1 через третий запорный элемент 15.3. Оба насоса приводят и поддерживают ионит в состоянии псевдоожижения в ионообменной колонне при пропускании через нее раствора исходного вещества и суспензии, получаемой в процессе ионного обмена и обработанной в устройстве для отделения твердой фазы. В другом варианте ионообменный аппарат содержит только один насос и отличается иным использованием запорных элементов. Изобретение обеспечивает предотвращение попадания в получаемый продукт нерастворимых и малорастворимых примесей, содержащихся в исходном растворе, и загрязнение ионита в ионообменной колонне. 2 н. и 4 з.п. ф–лы, 4 ил.

Группа изобретений относится к переработке природных солоноватых вод с получением растворов минеральных удобрений, предназначенных для фертигации: орошения и одновременного внесения удобрений при возделывании сельскохозяйственных культур, и может быть использована в сельском хозяйстве. Способ переработки природной солоноватой воды с получением раствора сложного минерального удобрения включает использование для переработки исходной воды трех последовательно расположенных ионообменных колонн, две из которых содержат ионит в форме катионного компонента получаемого удобрения, а одна - в форме анионного компонента. Раствор с выхода второй по ходу потока катионитной колонны направляют в блок нанофильтрации с получением концентрата и пермеата. Одну часть пермеата направляют в колонну с анионитом с получением на ее выходе раствора сложного минерального удобрения, а другая - в опреснитель для получения одновременно с удобрением обессоленной воды для приготовления фертигационного раствора. Солевой концентрат после опреснения используют для регенерации катионита в указанной колонне. Регенерат этой колонны совместно с солью, содержащей катионный компонент получаемого удобрения - для регенерации катионита первой по ходу потока колонны. В колонне с анионитом регенерация ионита осуществляется с использованием соли, содержащей анионный компонент получаемого удобрения. Дополнительно используются три такие же колонны, как указанные, образующие пары с ними. Во вторых колоннах этих пар выполняется регенерация ионитов в то время, когда через первые колонны пропускается перерабатываемая вода, и наоборот. Установка для переработки природной солоноватой воды с получением сложного минерального удобрения включает три ионообменных узла, имеющих каждый две колонны (К01, К02), емкости (Е01, Е02) для подаваемого извне регенерирующего раствора и такого раствора, вытесняемого из свободного объема колонны, а также переключатели потоков (П01, П02, П03). Изобретения позволяют обеспечить использование низкосортных исходных удобрений с предотвращением попадания агротехнически вредных компонентов в получаемое сложное минеральное удобрение и нарушения работы опреснителя, повысить экологическую безопасность, а также обеспечить отсутствие образования нерастворимых осадков в колоннах и сбросных растворах, увеличить производительность и обеспечить непрерывность получения сложного минерального удобрения с уменьшением расхода используемых простых удобрений и объема сбросных растворов. 3 н. и 13 з.п. ф-лы, 6 ил., 13 табл., 5 пр.

Группа изобретений может быть использована в сельском хозяйстве в регионах поливного земледелия для фертигации: орошения и одновременного внесения минеральных удобрений в виде растворов. Способ и варианты установки для его осуществления предусматривают переработку исходной воды в трех последовательно расположенных ионообменных колоннах - двух с катионитом (К3, К1) и одной (К2) с анионитом в форме агрохимически ценных компонентов получаемого сложного минерального удобрения. Раствор с выхода второй по ходу потока катионитной колонны (К1) направляют в блок нанофильтрации (НФ) с получением концентрата и пермеата. Одну часть последнего направляют в анионитную колонну (К2) с получением на ее выходе раствора сложного минерального удобрения, а другую - в опреснитель (ОПР) для получения одновременно с удобрением обессоленной воды для приготовления фертигационного раствора. Солевой концентрат после опреснения, собираемый в емкости (Е1), используют для регенерации катионита в колонне (К1), а регенерат этой колонны совместно с солью, содержащей катионный компонент получаемого удобрения, - для регенерации первой по ходу потока колонны (К3). В анионитной колонне (К2) регенерацию осуществляют с использованием соли, содержащей анионный компонент получаемого удобрения. Варианты установки различаются схемами сохранения и повторного использования регенерирующего раствора, вытесняемого из свободного объема колонн. В одном варианте используют общую емкость (Е1) для подаваемого извне и вытесняемого регенерирующего раствора, а в другом - две отдельные емкости. Изобретения предотвращают попадание вредных компонентов в получаемое минеральное удобрение, нарушение работы опреснителя, а также образование нерастворимых осадков в колоннах и сбросных растворах. Кроме того, концентрат после нанофильтрации является дополнительно получаемым сложным удобрением. 3 н. и 24 з.п. ф-лы, 9 ил., 16 табл., 6 пр.

Изобретение относится к сельскому хозяйству. Способы получения растворимых бесхлорных калийных удобрений представляют собой циклический процесс, включающий проведение в каждом цикле последовательности операций, являющихся реакциями ионного обмена, осуществляемыми в одной или нескольких ионообменных колоннах с использованием одинакового для всех операций катионита, находящегося перед началом каждой операции в ионной форме для данной операции, каждая операция включает обработку катионита раствором, являющимся исходным веществом указанного циклического процесса для данной операции, получение продукта данной операции и перевод катионита в ионную форму для очередной операции указанной последовательности, при этом одна из операций указанной последовательности включает обработку катионита, находящегося перед началом этой операции в Na-форме, раствором хлорида калия в качестве первого исходного вещества указанного циклического процесса, перевод катионита в К-форму и получение раствора хлорида натрия. Изобретение позволяет получить высокочистые бесхлорные калийные минеральные удобрения с использованием широкого ассортимента исходного сырья, включая кислоты. 2 н. и 24 з.п. ф-лы, 11 ил., 7 табл., 12 пр.

Изобретения относятся к сельскому хозяйству. Способы получения растворимых бесхлорных калийных удобрений представляют собой циклический процесс, включающий проведение в каждом цикле последовательности операций, являющихся реакциями ионного обмена, осуществляемыми в одной или нескольких ионообменных колоннах с использованием одинакового для всех операций катионита, находящегося перед началом каждой операции в ионной форме для данной операции, каждая операция включает обработку катионита раствором, являющимся исходным веществом указанного циклического процесса для данной операции, получение продукта данной операции и перевод катионита в ионную форму для очередной операции указанной последовательности, при этом одна из операций указанной последовательности включает обработку катионита, находящегося перед началом этой операции в Na-форме, раствором хлорида калия в качестве первого исходного вещества указанного циклического процесса, перевод катионита в К-форму и получение раствора хлорида натрия. Изобретения позволяют получить высокочистые бесхлорные калийные минеральные удобрения с использованием широкого ассортимента исходного сырья, включая кислоты. 2 н. и 37 з.п. ф-лы, 14 ил., 7 табл., 12 пр.

Изобретение относится к химии и металлургии и предназначено для переработки глиноземсодержащего сырья и вскрытия такого сырья. Способ переработки осуществляется в виде кругового процесса, включающего: стадию вскрытия, на которой приготавливают нагретый раствор-реагент, содержащий гидросульфат аммония, в который добавляют серную кислоту, и проводят разложение сырья раствором-реагентом с получением пульпы, содержащей раствор алюмоаммонийных квасцов с твердыми остатками разложения, разделение горячей пульпы на твердую и жидкую фазы с получением неразложившихся твердых остатков и маточного раствора квасцов, промывают твердые остатки водой, при этом раздельно собирают маточный раствор квасцов и промывные воды; стадию очистки, на которой промывные воды очищают от железа методом осаждения, затем их объединяют с маточным раствором квасцов и получают предварительно очищенный маточный раствор с последующим восстановлением содержащегося в этом растворе железа до двухвалентного состояния и охлаждением раствора с выделением кристаллов алюмоаммонийных квасцов, отделением их от маточного раствора и растворением в чистой воде с получением очищенного от примесей железа раствора квасцов, при этом из маточного раствора выделяют серную кислоту, которую затем используют на стадии вскрытия при приготовлении раствора-реагента; стадию осаждения, на которой получают гидроксид алюминия, осажденный из очищенного от примесей железа раствора квасцов воздействием на этот раствор аммиаком; стадию отделения осажденного гидроксида алюминия, на которой получают полупродукт в виде указанного гидроксида с одновременным получением остаточного раствора сульфата аммония, образовавшегося на стадии осаждения; стадию получения твердого сульфата аммония и стадию термического разложения твердого сульфата аммония, на которой получают гидросульфат аммония и аммиак, используемые соответственно на стадии вскрытия при приготовлении раствора-реагента и на стадии осаждения. Изобретение позволяет перерабатывать любое глиноземсодержащее сырье при невысоких температурах с одновременным снижением энергозатрат, уменьшить потери реагентов и требуемый объем их восполнения в ходе осуществления кругового процесса. 2 н. и 24 з.п. ф-лы, 2 ил., 1 табл., 36 пр.

Изобретение может быть использовано в химической промышленности. Способ извлечения редкоземельных элементов (РЗЭ) из экстракционной фосфорной кислоты (ЭФК) включает пропускание исходной ЭФК через колонну с сорбентом при температуре 20-85°C и последующее пропускание десорбирующего раствора. В качестве сорбента используют сильноосновный анионит гелевого типа. Анионит предварительно переводят в смешанную ионную форму, равновесную с перерабатываемой ЭФК, путем пропускания ЭФК через колонну с анионитом до тех пор, пока состав выходящего из колонны раствора не станет равным составу входящей в нее ЭФК. Десорбцию ведут разбавленной фосфорной кислотой. Сформированный после прохождения через анионит коллоидный раствор, обедненный по кислоте и обогащенный по РЗЭ, направляют на выделение твердого концентрата РЗЭ. Исходную ЭФК пропускают через колонну с сорбентом в направлении снизу вверх, а десорбирующий раствор - в направлении сверху вниз. Изобретение позволяет снизить расход реагентов на десорбцию РЗЭ и регенерацию ионитного материала, повысить технологическую эффективность процесса выделения концентрата РЗЭ из экстракционной фосфорной кислоты. 5 з.п. ф-лы, 1 ил., 4 табл., 5 пр.

Изобретение относится к способу извлечения редкоземельных элементов (РЗЭ) из экстракционной фосфорной кислоты (ЭФК). Способ включает использование анионита фосфатно-смешанной формы в циклическом процессе сорбции-десорбции. При этом десорбцию во всех, кроме последней, стадях-циклах, ведут до соотношения начальной (С0) и конечной (С) концентраций кислоты, соответствующего условию 0,25≤C/С0≤0,75, а в последней - до концентрации десорбируемой фосфорной кислоты не более 0,15 моль/л. Пропускание ЭФК через колонну с анионитом ведут на каждой стадии цикла снизу вверх до проскока, соответствующего относительной концентрации, соответствующей условию 0,25≤C/С0≤0,75. Полученный обогащенный по РЗЭ раствор направляют на выделение твердого концентрата РЗЭ. Десорбцию на каждой стадии цикла ведут разбавленной фосфорной кислотой с получением во всех, кроме последней, стадиях-циклах десорбата очищенной фосфорной кислоты и десорбата последней стадии-цикла - с относительной концентрацией фосфорной кислоты, соответствующей условию 0,25≤C/С0≤0,75, и с концентрацией менее 0,25 моль/л. При этом последний возвращают на стадию десорбции. Технический результат заключается в повышении выделения концентрата РЗЭ. 6 з.п. ф-лы, 8 ил., 4 табл., 6 пр.

 


Наверх