Патенты автора Потемкин Григорий Александрович (RU)

Изобретение относится к измерительной технике и может быть использовано при создании устройств преобразования тепловой энергии в электрическую. Технический результат: расширение функциональных возможностей устройства определения электрофизических характеристик. Сущность: устройство для определения электрофизических характеристик образцов из термоэлектрических материалов содержит рабочую камеру для размещения исследуемого образца, полость которой соединена с системой вакуумирования и заполнения различными газами, нагреватель одной из поверхностей исследуемого образца, соединенный с источником питания постоянного тока, температурными датчиками и программатором температур, система охлаждения противоположной нагреваемой поверхности исследуемого образца, узел для обеспечения теплового контакта нагреваемой и охлаждаемой поверхности исследуемого образца с нагревателем и охлаждаемой зоной камеры соответственно, измерительный блок, включающий вольтметр и омметр. В качестве системы охлаждения используют проточное водяное охлаждение. В измерительный блок дополнительно входит магазин сопротивлений с возможностью подключения к электрической цепи измерительного блока различных по величине сопротивлений для снятия вольт-амперной характеристики исследуемого образца. Узел для обеспечения надежного теплового контакта выполняют в виде пружинного блока с крепежными элементами с возможностью изменения силы сжатия образца. В качестве газа рабочей камеры может быть использован ксенон. 1 з.п. ф-лы, 3 ил., 1 табл.
Изобретение относится к области ресурсосбережения и регенерации материалов при утилизации объектов техники, в частности, оно предназначено для извлечения порошка наполнителя из композиционного материала. Техническим результатом является сокращение производственного цикла и контроль извлечения наполнителя из утилизируемого материала. Способ заключается в нагреве композиционного материала в среде непрерывно продуваемого газа с выведением из зоны нагрева газообразных продуктов с последующим извлечением наполнителя. При этом предварительно определяют продукты разложения композиционного материала, которые используют в качестве индикаторов полноты протекания процесса разложения. Нагрев композиционного материала осуществляют до температуры не ниже температуры разложения связующего. На выходе из зоны нагрева производят отбор проб газообразных продуктов, в которых определяют наличие веществ-индикаторов. По отсутствию в газообразных продуктах веществ-индикаторов судят об окончании процесса разложения связующего композиционного материала, после чего извлекают регенерированный наполнитель. 2 табл.

Изобретение относится к области контрольно-измерительной техники, касающейся исследования, измерения и прогнозирования свойств полимерных материалов, включая композиционные материалы на полимерной основе. Заявляется термоаналитический способ определения энергии активации термодеструкции Е полимерного материала, который заключается в нагревании ряда идентичных образцов полимерного материала с разной скоростью нагрева, определении температуры, связанной с потерей массы каждого образца при нагревании, по полученным данным определяют энергию активации E1. Одновременно регистрируют тепловой поток для каждого образца полимерного материала, обусловленный процессами термодеструкции, по полученным данным определяют энергию активации Е2. За энергию активации термодеструкции полимерного материала принимают среднюю величину полученных энергий активации Е=(Е1+Е2)/2. Технический результат - повышение точности определения значения энергии активации в целях прогнозирования сроков хранения полимерных материалов; экспрессность анализа; незначительная трудоемкость. 7 ил., 1табл.

Изобретение относится к области контрольно-измерительной техники, касающейся исследования, измерений и контроля термических характеристик веществ и материалов, и может быть использовано для идентификации вещества при принятии мер по обеспечению пожарной и промышленной безопасности. Способ анализа вещества термоаналитическим методом заключается в определении его пожаровзрывоопасности по величине экзотермического эффекта процесса окисления и начальной температуре тепловыделения. Одновременно по величине экзотермического эффекта процесса окисления проводят идентификацию вещества, а для определения пожаровзрывоопасности вещества дополнительно используют величину усредненной интенсивности тепловыделения, рассчитываемую по формуле I=ΔQ/ΔТ, где ΔQ - экзотермический эффект окисления (Дж/г), а ΔТ - ширина температурного интервала экзотермического пика окисления на половине его высоты (°C). Технический результат - возможность одновременной идентификации вещества и определения его пожаровзрывоопасности; повышение надежности и точности при оценке пожаровзрывоопасности веществ и материалов; расширение возможностей для исследования пожарозрывоопасности; сокращение времени и трудозатрат; экспрессность способа. 3 табл., 4 ил.

Изобретение относится к контрольно-измерительной и испытательной технике

 


Наверх