Патенты автора Усеинов Алексей Серверович (RU)

Изобретение относится к технике контроля и исследования материалов и изделий и может быть использовано для определения параметров рельефа поверхности (линейные размеры, шероховатость), механических (твердость, модуль упругости, адгезия покрытия) и трибологических (коэффициент трения, износостойкость, время жизни покрытий) характеристик материалов цилиндрических и плоских поверхностей трения изделий машиностроения. Устройство содержит пьезокерамический стол, корпус и индентор, электронный блок контроля электрических сигналов емкостных датчиков и возбуждения упругих элементов. Индентор установлен в узле его крепления на упругом элементе, который выполнен в виде многослойного пакета из пяти консольно закрепленных в держателе и соединенных с блоком контроля плоских прямоугольных пластин. Внешняя пара пластин наибольшей длины соединена на концах между собой с помощью жесткой диэлектрической стойки и образует внешний контур, внутри которого расположен внутренний аналогичный контур из пары соединенных между собой с помощью диэлектрической стойки пластин меньшей длины, но большей жесткости, чем пластины внешнего контура. В центре внутреннего контура размещена центральная пластина и все пластины закреплены в держателе параллельно с зазорами между собой. На конце нижней пластины внешнего контура закреплена гладкая упорная сфера, а на концах нижней и верхней пластин внутреннего контура - узел крепления сменных инденторов с возможностью установки их через технологические отверстия в нижней и верхней пластинах внешнего контура. Технический результат: расширение функциональных возможностей, повышение качества (в частности, разрешающей способности), достоверности и стабильности измерений, а также оптимизация конструкции и повышение ее технологичности при производстве. 1 з.п. ф-лы, 4 ил.

Использование: для измерения механических свойств материалов. Сущность изобретения заключается в том, что динамический наноиндентор включает корпус прибора с закрепленным на нем актюатором с подвижной катушкой, связанной со штоком, емкостный датчик и индентор, смонтированный на свободном конце штока, дополнительно снабжен силовой ячейкой, закрепленной внутри корпуса прибора на упругих подвесах, к верхней части которой прикреплен промежуточный подвижный шток, связанный с подвижной катушкой актюатора и с емкостным датчиком актюатора, подвижная обкладка которого закреплена на промежуточном подвижном штоке, для измерения перемещения корпуса силовой ячейки по отношению к корпусу прибора, внутри корпуса силовой ячейки смонтированы гибкие мембраны, на которых, соосно промежуточному штоку, закреплен рабочий шток с индентором на конце и емкостный датчик силы, производящий измерения приложенной силы на основании измерений перемещения рабочего штока 10 по отношению к корпусу силовой ячейки 7. Под нижним упругим подвесом размещен емкостный датчик, для измерения величины перемещения рабочего штока по отношению к корпусу прибора и определения глубины погружения индентора в тестируемый материал, обкладки и емкостного датчика силы и емкостного датчика глубины перемещения закреплены на подвижном рабочем штоке. Технический результат: обеспечение возможности расширения функциональных возможностей динамического наноиндентора. 2 з.п. ф-лы, 5 ил.

Изобретение относится к области устройств, осуществляющих измерения механических свойств материалов, и предназначено для определения площади контакта и наблюдения поверхности образца в процессе его деформации. Индентор-объектив выполнен из оптически прозрачного материала, индентирующий торец тела которого огранен в виде n-гранной пирамиды. Согласно изобретению неиндентирующий торец индентора также огранен в виде n-гранной пирамиды. Боковые грани пирамид ориентированы таким образом, что каждой грани пирамиды индентирующего торца соответствует параллельная ей грань неиндентирующего торца. Высоты пирамид лежат на одной прямой. Технический результат: расширение функциональных возможностей индентора–объектива за счет визуализации процесса деформирования поверхности образца. 9 з.п. ф-лы, 12 ил.

Изобретение относится к области медицины, а именно стоматологическому материаловедению, и позволяет определить прочность соединения стоматологического материала, используемого для фиксации зубных протезов твердым тканям зуба. Устройство для проведения механических испытаний зубных протезов состоит из несущей плиты, на которой смонтирован шаговый двигатель и приспособление для фиксации протеза. Взаимодействие шагового двигателя с приспособлением для фиксации протеза происходит через нить, связанную с шаговым двигателем, пружиной, весовым модулем, на корпусе которого имеется жидкокристаллический индикатор для контроля измеряемого значения силы, и крючком-зацепом. Измерение приложенной к протезу нагрузки осуществляется с помощью весового модуля, а также имеется часовой индикатор, используемый для измерения деформации протеза, определяемой по отклонению стрелки на циферблате устройства. Управление включения и выключения устройства производится с помощью персонального компьютера и специализированного программного обеспечения. Изобретение позволяет обеспечить мониторинг и регистрацию допустимых прочностных характеристик как самих зубных протезов, так и зубных протезов, фиксированных к твердым тканям зуба, приложение задаваемой статической или динамической нагрузки зубного протеза. 1 ил.

Изобретение относится к области медицины, в частности к стоматологии, и может быть использовано для изготовления разобщающего послеоперационного протеза для верхней челюсти при всех видах ее резекции. До операции получают оттиски с обеих челюстей. Регистрируют прикус. По полученным оттискам изготавливают модели. Фиксируют модели в артикуляторе и осуществляют постановку гарнитурных зубов в месте собственных отсутствующих. Рабочую модель сканируют и переводят в цифровой формат с помощью компьютерного модуля CAD/CAM системы. На исходной гипсовой модели очерчивают границы предполагаемого операционного поля и гравируют границы в вертикальном и горизонтальном направлениях шириной и глубиной 2,5 мм. Гравированную модель сканируют с помощью компьютерного модуля CAD/CAM системы. Моделируют на компьютерном модуле разобщающий послеоперационный зубочелюстной протез с ретенционными элементами и искусственными зубами, путем сопоставления данных протезного ложа гравированной модели и зубных рядов исходной модели полученной в дооперационном периоде. Фрезеруют смоделированную конструкцию разобщающего послеоперационного зубочелюстного протеза с искусственными зубами из пластмассового диска. Обрабатывают полученный протез. Фиксируют протез в полости рта пациента. Способ, за счет монолитного изготовления из пластмассы разобщающего послеоперационного зубочелюстного протеза с ретенционными элементами и искусственными зубами методом компьютерного фрезерования, позволяет восстановить жевательную функцию, обеспечить формирование протезного ложа в участке проведенной операции и оптимальную фиксацию при неблагоприятных клинических условиях протезного ложа. 1 ил.

Изобретение относится к технике контроля и исследования материалов и изделий и может быть использовано для определения параметров рельефа поверхности (линейные размеры, шероховатость), механических (твердость, модуль упругости) и трибологических (коэффициент трения, износостойкость, время жизни покрытий) характеристик материалов с субмикронным и нанометровым пространственным разрешением. Устройство содержит индентор, установленный на упругом элементе, по меньшей мере, два оптических датчика, каждый из которых включает источник оптического излучения и его приемник. Упругий элемент выполнен П-образным, стойки П-образного упругого элемента закреплены на держателе, индентор установлен на перекладине П-образного упругого элемента. П-образный упругий элемент выполнен с возможностью, по меньшей мере, частичного перекрытия потока оптического излучения оптических датчиков и изменения площади перекрытия потока при своем изгибе или содержит установленное на нем приспособление, выполненное с возможностью, по меньшей мере, частичного перекрытия потока оптического излучения оптических датчиков и изменения площади перекрытия потока при своем изгибе. По меньшей мере, один из оптических датчиков выполнен с возможностью контроля изгиба перекладины в плоскости П-образного элемента в процессе измерения, а другой из оптических датчиков - с возможностью контроля изгиба стоек в плоскости П-образного элемента в процессе измерения. Технический результат: повышение качества, достоверности и стабильности измерений, повышение технологичности устройства при его производстве. 6 з.п. ф-лы, 4 ил.

Изобретение относится к технике контроля и исследования материалов и изделий и может быть использовано для определения параметров рельефа поверхности и механических характеристик материалов с субмикронным и нанометровым пространственным разрешением

 


Наверх