Патенты автора Пахлян Ирина Альбертовна (RU)

Изобретение относится к технологиям гидродинамической очистки поверхностей оборудования, деталей, интервалов перфорации скважин от природных и техногенных загрязнений. Предложено устройство для гидродинамической очистки, содержащее проточный канал с профилем, образованным соосно расположенными и последовательно сопряженными друг с другом участками: цилиндрическим участком, сферическим участком, участком острая кромка и конически расходящимся участком с углом конусности 13-14°. Предложен также способ гидродинамической очистки поверхностей оборудования, деталей и интервалов перфорации в скважине, заключающийся в воздействии на очищаемую поверхность струей жидкости под давлением, вытекающей в жидкостной или газовой среде из устройства для гидродинамической очистки. Технический результат - повышение скорости удаления отложений с поверхностей оборудования, деталей при сохранении очищаемой поверхности неповрежденной и недеформированной, а также с интервала перфорации скважин в условиях высокого противодавления. 2 н. и 8 з.п. ф-лы, 3 ил.

Изобретение относится к нефтяной промышленности и может применяться при промывке и очистке буровых скважин. Способ включает спуск на забой скважины колонны насосно-компрессорных труб с косым срезом, оснащенным коническим посадочным седлом для сменных насадков на 2-2,5 метра выше текущего забоя, прокачку промывочной жидкости и ее отбор через межтрубное пространство скважины с постепенным спуском колонны насосно-компрессорных труб до упора косого среза в пробку и изменения веса подвески колонны. Затем прокачку останавливают и осуществляют сброс насадка во внутреннюю часть колонны насосно-компрессорных труб, подают промывочную жидкость до посадки насадка в коническое седло для сменных насадков, которая сопровождается резким скачкообразным увеличением давления, затем осуществляют прокачку промывочной жидкости по колонне насосно-компрессорных труб через насадок и отбор промывочной жидкости с механическими фракциями через межтрубное пространство до достижения проектной глубины, после чего прокачку останавливают и переключают скважину на обратную промывку. При этом извлекают насадок вместе с промывочной жидкостью и механическими примесями на дневную поверхность. Насадок выполнен гидромониторной или кавитационной конфигурации с диаметром сечения 8-16 мм. Сброс насадка во внутреннюю часть колонны может быть осуществлен в двухкратном или трехкратном повторении, при этом в каждом последующем повторении используют насадок меньшего внутреннего диаметра, чем предыдущий. Увеличивается степень разрушения уплотненных песчано-глинистых и проппантовых пробок и сокращается время их разрушения. 2 з.п. ф-лы, 2 ил.

Изобретение относится к области нефтегазодобывающей промышленности и предназначено для решения задач по восстановлению продуктивности скважин и интенсификации добычи нефти. Изобретение содержит способ обработки прискважинной зоны пласта. В скважину спускают установленные последовательно снизу вверх на колонне насосно-компрессорных труб ротационный гидравлический вибратор и струйный насос. В ротационный гидравлический вибратор подают жидкостную среду для интенсификации виброволнового воздействия на прискважинную зону продуктивного пласта. Одновременно с помощью струйного насоса откачивают жидкостную среду вместе с кольматирующими частицами на поверхность. Закачивают тампонажный состав, выдерживают до его затвердевания. Затем закачивают углеводородный растворитель, выдерживают 1-2 часа. Затем закачивают кислотный состав, продавливают буферной жидкостью в пласт и выдерживают 1,5-2 часа. Откачивают продукты реакции и непрореагировавший кислотный состав с помощью струйного насоса. Определяют рН очищенного от нефти и механических примесей непрореагировавшего кислотного состава. Ротационный гидравлический вибратор осуществляет непрерывное вращение и возвратно-поступательное перемещение вдоль интервала перфорации. Все операции производят за один спуск-подъем. Увеличивается дебит скважины по нефти, снижается обводненность в добываемой продукции. 1 з.п. ф-лы, 1 ил.

Изобретение относится к устройствам для создания импульсных колебаний в проточной жидкой среде и может быть использовано для интенсификации процессов эмульгирования, абсорбции и других в системах «жидкость-жидкость», «жидкость - твердое тело». Роторный пульсационный аппарат содержит корпус с патрубками входа и выхода среды, концентрично установленные в нем ротор и статор с каналами в боковых стенках цилиндров, камеру озвучивания, электродвигатель, при этом каналы ротора и статора выполняют противоположно друг другу под углом 35° к радиальной оси, при этом каналы ротора выполнены в виде конфузора, а каналы статора - в виде диффузора, а угол при вершине конуса, образующего конфузор и диффузор, составляет 13-14°. Количество каналов в статоре и роторе четное, от 20 до 50. Технический результат - повышение степени диспергирования и эмульгирования твердой и жидкой фаз буровых и тампонажных растворов, исключение «холостого хода». 1 з.п ф-лы, 1 ил.

Группа изобретений относится к способу и установке для очистки внутреннего пространства различного технологического оборудования, применяемого в газовой промышленности, в частности к способу очистки внутреннего пространства пылеуловителя мультициклонного типа от отложений, представляющих собой уплотненную тонкодисперсную фракцию минеральных и органических отложений. Способ кавитационно-реагентной очистки внутреннего пространства пылеуловителя мультициклонного типа заключается в том, что выведенный из эксплуатации и подготовленный пылеуловитель мультициклонного типа очищают от твердых отложений скребковыми приспособлениями, проводят химическую очистку и гидравлическую очистку с последующим удалением разрушенных отложений. При этом химическую и гидравлическую очистку внутренних поверхностей проводят в водной среде раствора поверхностно-активных веществ (ПАВ) при воздействии пульсирующего кавитационного потока схлопывающихся газопаровых пузырьков и гидродинамического силового воздействия радиально-направленных или активно-реактивно направленных струйных потоков на отложения внутренней поверхности при давлении 15,0-30,0 Мпа. После проведения очистки водный раствор ПАВ подвергается очистке от загрязнений и может быть использован для заполнения следующего пылеуловителя мультициклонного типа с добавкой ПАВ до необходимой концентрации. Установка для кавитационно-реагентной очистки внутреннего пространства пылеуловителя мультициклонного типа состоит из насоса высокого давления, сообщенного с одной стороны с линией низкого давления подачи рабочей жидкости от резервуара или трубопровода технической воды, а с другой стороны с линией высокого давления, которая оснащена манометром. При этом для генерирования одновременно пульсирующего кавитационного потока и гидродинамического силового давления на линию высокого давления дополнительно установлен ротационный генератор кавитации с четным количеством кавитаторов. Кавитаторы могут быть активно-реактивными или радиально-направленными. Технический результат группы изобретений заключается в повышении эрозийного разрушения отложений и снижении адгезии отложений с внутренней поверхностью очищаемых деталей. 2 н. и 3 з.п. ф-лы, 2 ил.

Изобретение относится к нефтяной и газовой промышленности, в частности к устройствам для очистки фильтров скважин, поверхностей трубопроводов и сложных фигурных внутренних поверхностей различных деталей и оборудования. Устройство для очистки внутренних поверхностей состоит из установленного на опоре (5) золотника (4), расположенного коаксиально полому корпусу (1). Корпус содержит осевой цилиндрический канал (2) с расположенными в нем радиальными и взаимно перпендикулярными технологическими отверстиями по четыре в два ряда – верхний и нижний, сопряженными каналами с отверстиями золотника. Для обеспечения вращения отверстия золотника выполнены с тангенциальным смещением и в них установлены сопла. Верхний ряд технологических отверстий (11) выполнен под углом 45 градусов, нижний ряд технологических отверстий (8) выполнен под углом 90 градусов к оси устройства. Сопла представляют собой кавитаторы (12) для генерирования кавитационно-импульсного истечения в струйном потоке. Каждое сопло состоит из трех участков: первого входного - выполненного в виде радиального насадка радиусом скругления, равным 2 диаметрам наименьшего сечения (2d); второго цилиндрического участка - диаметром наименьшего сечения d и длиной 1ц=2d; третьего - конически расходящегося участка с углом раскрытия 13-14 градусов и длиной lд=5d. Технический результат: повышение эффективности удаления прочных отложений с высокой адгезией к поверхностям, а также в труднодоступных местах. 1 з.п. ф-лы, 2 ил.

Группа изобретений относится к нефтегазовой промышленности и может быть использована при освоении средних по запасам нефтяных месторождений высоковязких нефтей, расположенных вдали от обустроенных нефтегазодобывающих регионов, с последующей переработкой углеводородного сырья непосредственно на промысле. Технический результат - повышение коэффициента нефтеизвлечения. По способу осуществляют первичную подготовку нефти, газа и воды, переработку нефти путем разделения на легкие фракции и асфальтосмолистые компоненты. Затем осуществляют прямую отгонку легких фракций. Одну их часть используют по замкнутому циклу в технологических операциях добычи. Другую часть направляют на переработку. Часть легких фракций и часть асфальтосмолистых компонентов используют по замкнутому циклу в технологических операциях добычи для выработки электрической и тепловой энергии. Отделившийся попутный газ осушают и направляют на выработку электрической и тепловой энергии. Подготовленную воду нагревают до температуры 80-85°С и направляют на получение парогаза, который при давлении 16 МПа и температуре 250-360°С подают в нагнетательную скважину для прогрева пласта и поддержания пластового давления. Для осуществления способа предусмотрена соответствующая установка. 2 н.п. ф-лы, 1 табл., 1 ил.

Изобретение относится к нефтегазовой отрасли, в частности к скважинным струйным установкам, и предназначено для добычи пластовых флюидов из скважин с одновременным интенсифицирующим воздействием на прискважинную зону продуктивного пласта. Погружная эжекционная установка для добычи пластового флюида из скважины содержит установленный на внутренней колонне насосно-компрессорных труб (НКТ) эжекторный насос. При этом эжекторный насос включает корпус, в котором установлены соосно внутренней колонне (НКТ) сопло и камера смешения с диффузором, параллельно которой выполнены аксиальные каналы для подвода рабочего потока. При этом для подвода эжектируемого потока каналы в корпусе выполнены аксиальными, со стороны верхнего конца они сообщены с приемной камерой эжекторного насоса, а со стороны нижнего конца - со всасывающей полостью корпуса погружной эжекционной установки, в котором также расположена подвижная тарель. Тарель открывается при перепаде давления и выполняет функцию обратного клапана. При этом в качестве сопла используется сопло-кавитатор, состоящее из первого входного участка, выполненного в виде коноидального насадка для максимального значения коэффициента скорости и расхода движущейся жидкости, радиусом скругления, равным 2÷5 диаметрам наименьшего сечения (2÷5 d); второго цилиндрического участка диаметром d, длиной lц=2÷3d; третьего конически расходящегося участка с углом раскрытия 13°30' и длиной lд=8÷12d. При этом кавитационный режим истечения в проточной части эжекторного насоса сводится к нахождению коэффициента эжекции, при котором возникает кавитация, по приведенному математическому выражению. Техническим результатом является повышение дебита скважины, увеличение коэффициента извлечения пластового флюида, возможность регулирования значения депрессии, снижение эксплуатационных затрат. 2 ил.

Изобретение относится к нефтегазовой отрасли, в частности к скважинным струйным установкам, и предназначено для очистки забоя от песчаных пробок. Устройство содержит установленные на колонне насосно-компрессорных труб (НКТ) эжекторный насос, включающий корпус, в котором установлены соосно внутренней колонне НКТ сопло и камера смешения с диффузором. В корпусе параллельно камере смешения выполнены осевые каналы для подвода рабочего потока и сообщенные с ними радиально расположенные поперечные боковые каналы для подвода эжектируемого потока. Со стороны верхнего конца осевые каналы сообщены с кольцевым пространством между внешней НКТ и внутренней НКТ, а со стороны нижнего конца - с рабочей камерой. В основании корпуса установлены опорная пята, сообщенная с соплом эжекторного насоса посредством подпружиненного толкателя с возможностью движения вверх и вниз под действием истекающей рабочей среды и функциональная вставка, внутри которой под углом 30° расположено не менее четырех генераторов кавитации. Повышается эффективность процесса разрушения песчаной пробки, снижается абразивное воздействие песчаной пульпы, создается более глубокая депрессия на пласт. 1 з.п. ф-лы, 2 ил.

Насос предназначен для промывки скважин. Насос содержит конусообразный корпус, внутри которого параллельно расположены канал подвода активной жидкостной среды и активное сопло, сопряженное через боковой паз с камерой смешения, соединенной с трубопроводом отвода смеси сред, при этом внизу конусообразного корпуса установлена функциональная насадка, выполненная в виде цилиндрического корпуса насадок, горизонтально разделенного на две части, при этом верхняя часть непосредственно примыкает к конусообразному корпусу и через наклонные патрубки разных диаметров соединена с активным соплом и каналом подвода активной жидкостной среды, а нижняя часть, равная основному диаметру конусообразного корпуса, содержит по четыре радиальные насадки, расположенные по периметру, и одну насадку, расположенную по оси функциональной вставки. Технический результат изобретения заключается в повышении эффективности, надежности и долговечности работы устройства. 3 з.п. ф-лы, 4 ил.

Изобретение относится к области нефтегазодобывающей промышленности и предназначено для решения задач по восстановлению коллекторских свойств прискважинной зоны продуктивных пластов добывающих нефтегазовых скважин и вовлечению в разработку трудноизвлекаемых и нерентабельных запасов углеводородов, а также может быть использовано для декольматажа фильтров и прифильтровых зон гидрогеологических скважин. Способ обработки прискважинной зоны продуктивного пласта, включающий спуск в скважину на колонне труб установленные последовательно снизу вверх гидроимпульсное устройство и струйный насос. Подают жидкостную среду в гидроимпульсное устройство и воздействуют этой средой на прискважинную зону продуктивного пласта с одновременной откачкой с помощью струйного насоса жидкостной среды вместе с кольматирующими частицами на поверхность. Дополнительно на колонне насосно-компрессорных труб перед гидроимпульсным устройством установлен глубинный манометр. Причем в качестве гидроимпульсного устройства используют ротационный гидравлический вибратор для создания гидромониторного и импульсно-кавитационного истечения вдоль интервала перфорации. Воздействие на структуры пласта с флюидом осуществляют путем возбуждения резонансных колебаний столба жидкости в скважине за счет совпадения частоты пульсаций ротационного гидравлического вибратора и собственной резонансной частоты обсадной колонны с флюидом, находящейся ниже ротационного гидравлического вибратора и являющейся резонатором типа «органная труба». Требуемую частоту колебаний f, Гц, определяют по приведенному математическому выражению. Техническим результатом является повышение эффективности проводимых исследований и обработки прискважинной зоны пласта с совмещением воздействий гидромониторным эффектом на перфорационные отверстия или фильтры эксплуатационной колонны и импульсно-кавитационным истечением на структуру пласта с флюидом с контролем параметров обработки. 1 з.п. ф-лы, 1 ил.

Изобретение относится к нефтегазодобывающей промышленности и может использоваться и в других отраслях для импульсно-ударного воздействия в скважине на продуктивные пласты с целью интенсификации отбора нефти, газа артезианской воды или увеличения приемистости нагнетательных скважин. Технический результат - повышение качества очистки интервала перфорации пласта и увеличение проницаемости горных пород в интервале перфорации (или фильтровой зоны) скважины, за счет обеспечения эффективных параметров ударно-импульсного воздействия при упрощении конструкции используемого оборудования и снижения энергоемкости наземного насосного оборудования. Ротационный гидравлический вибратор включает полый корпус с установленным коаксиально ему золотником. Корпус содержит осевой цилиндрический канал с расположенными в нем технологическими отверстиями, сопряженными каналами с отверстиями золотника. Корпус выполнен заглушенным снизу. Золотник установлен на опоре, коаксиальной к корпусу. В осевом цилиндрическом канале технологические отверстия выполнены по четыре в два ряда, при этом они являются радиальными и попарно взаимоперпендикулярными. Сопряженные с ними отверстия золотника, расположенные в верхнем ряду, выполнены радиальными, а расположенные в нижнем ряду и сопряженные путем проточки выполнены смещенными тангенциально. В отверстиях золотника установлены гидромониторные сопла. Отверстия золотника выполнены с возможностью установки в них сменных гидромониторных сопел различного диаметра и конфигурации. 1 з.п. ф-лы, 3 ил.

Изобретение может использоваться в химической, строительной, пищевой, а особенно в нефтяной и газовой промышленности при приготовлении буровых, промывочных и тампонажных растворов. Устройство включает всасывающий патрубок, патрубок подвода жидкости затворения, приемную камеру, кольцевую рабочую насадку, камеру смешения. Камера смешения выполнена в виде кольцевого канала, соосного с кольцевой рабочей насадкой. Внешний диаметр камеры смешения больше внешнего диаметра рабочей насадки в 2 раза, внутренний диаметр камеры смешения меньше внутреннего диаметра рабочей насадки в 1,5 раза. Отношение площадей живых сечений камеры смешения и рабочей насадки находится в пределах 5-10. Достигается интенсификация процесса смешения, повышается качество смеси. 3 ил.

Группа изобретений относится к бурению и ремонту нефтяных и газовых скважин, в частности к приготовлению тампонажных, буровых растворов и регулированию их плотности. Способ включает подачу в гидросмеситель струйного типа, соединенный материалопроводом с загрузочной емкостью, сыпучего материала, смешение его с водой затворения, подаваемой под давлением. Подачу сыпучего материала осуществляют за счет разности давлений в загрузочной емкости и в приемной вакуумной камере гидросмесителя при стабильном регулируемом расходе этого материала путем поддержания его уровня в загрузочной емкости стабильным. Изменение расхода сыпучего материала осуществляют посредством регулирования глубины погружения конца материалопровода под уровень сыпучего материала в соответствии с техническим регламентом процесса приготовления раствора. Поддерживают псевдоожиженное состояние сыпучего материала в загрузочной емкости. Повышается качество буровых и тампонажных растворов. 2 н. и 2 з.п. ф-лы, 2 ил.

Изобретение относится к устройствам для смешивания порошкообразного материала и жидкости затворения растворов и может использоваться в нефтегазодобывающей промышленности при приготовлении буровых промывочных и тампонажных растворов, а также в других областях при смешивании разнофазных потоков

 


Наверх