Патенты автора ГИШАР Бертран (FR)

Настоящее изобретение относится к области гидрообработки углеводородного сырья типа газойля. Описан способ гидрообработки по меньшей мере газойлевой фракции, имеющей средневзвешенную температуру (TMP) в интервале от 240 до 350°C, причем способ осуществляют при температуре в интервале от 250 до 400°C, при общем давлении в интервале от 2 до 10 МПа, при соотношении объема водорода и объема углеводородного сырья в интервале от 100 до 800 литров на литр и при часовой объемной скорости (VVH), определенной как отношение объемного расхода жидкого углеводородного сырья к объему катализатора, загруженного в реактор, в интервале от 1 до 10 ч-1, причем в способе применяют по меньшей мере один катализатор, содержащий по меньшей мере один металл из группы VIB и/или по меньшей мере один металл из группы VIII Периодической системы элементов и носитель, содержащий аморфный мезопористый оксид алюминия, причем указанный оксид алюминия получают, осуществляя по меньшей мере следующие стадии: a) по меньшей мере одну первую стадию осаждения оксида алюминия в водной реакционной смеси исходя по меньшей мере из одного основного предшественника, выбранного из алюмината натрия, алюмината калия, аммиака, гидроксида натрия и гидроксида калия, и по меньшей мере из одного кислотного предшественника, выбранного из сульфата алюминия, хлорида алюминия, нитрата алюминия, серной кислоты, соляной кислоты и азотной кислоты, cтадию нагревания полученной после стадии a) суспензии, осуществляемую между стадией a) и второй стадией а') осаждения, которую осуществляют при температуре в интервале от 20 до 90°C в течение промежутка времени от 7 до 45 минут; a’) вторую стадию осаждения, которую осуществляют между первой стадией осаждения a) и стадией b) термической обработки, b) стадию термической обработки суспензии, полученной после стадии a), при температуре в интервале от 50 до 200°C в течение промежутка времени от 30 минут до 5 часов, что обеспечивает получение геля оксида алюминия; c) стадию фильтрования суспензии, полученной после стадии b) термической обработки, с последующим осуществлением по меньшей мере одной стадии промывки полученного геля; d) стадию сушки геля оксида алюминия, полученного после стадии c), для получения порошка; e) стадию формования порошка, полученного после стадии d), для получения сырого материала; f) стадию термической обработки сырого материала, полученного после стадии e), при температуре в интервале от 500 до 1000°C, необязательно в токе воздуха, содержащего до 60 об.% воды. Технический результат - разработка способа гидрообработки по меньшей мере газойлевой фракции, в котором применяют катализатор, обладающий улучшенными каталитическими характеристиками, причем указанный способ обеспечивает повышенную гидрообессеривающую активность. 13 з.п. ф-лы, 5 пр., 6 табл.

Изобретение относится к способу получения катализатора гидродеметаллизации, содержащего: подложку из оксида алюминия, активную гидрирующую-дегидрирующую фазу, содержащую по меньшей мере один металл группы VIB периодической системы элементов, необязательно по меньшей мере один металл группы VIII периодической системы элементов, необязательно фосфор, причем указанный катализатор имеет: удельную поверхность SBET более или равную 100 м2/г, полный объем пор более или равный 0,75 мл/г, среднеобъемный диаметр мезопор от 18 до 26 нм, объем мезопор более или равный 0,65 мл/г, объем макропор от 15 до 40% от полного объема пор; и причем указанный способ включает в себя, по меньшей мере, следующие этапы: a) растворение кислотного предшественника алюминия, b) регулирование значения pH с помощью щелочного предшественника, c) соосаждение кислотного предшественника и щелочного предшественника, причем по меньшей мере один из двух содержит алюминий, чтобы получить суспензию алюмогеля с желаемой концентрацией оксида алюминия, d) фильтрация, e) сушка, чтобы получить порошок, f) формование, g) термообработка, чтобы получить алюмооксидную подложку, h) введение, путем пропитки, активной гидрирующей-дегидрирующей фазы на указанную алюмооксидную подложку. Технический результат – катализатор, полученный указанным способом, имеет особенно выгодную пористую структуру при содержании активной фазы, подходящей для реакций гидродеметаллизации тяжелого сырья. 6 з.п. ф-лы, 6 ил., 12 табл., 12 пр.

Изобретение относится к получению катализатора для гидродеметаллизации, содержащего: подложку оксида алюминия, активную гидрирующую-дегидрирующую фазу, содержащую по меньшей мере один металл группы VIB периодической системы элементов, необязательно по меньшей мере один металл группы VIII периодической системы элементов, необязательно фосфор, причем указанный катализатор имеет: удельную поверхность SBET от 75 до 150 м2/г, полный объем пор от 0,55 до 0,85 мл/г, средний диаметр мезопор от 16 до 28 нм, объем мезопор от 0,50 до 0,90 мл/г, объем макропор менее 15% от полного объема пор, причем указанный способ включает по меньшей мере: a) первый этап осаждения по меньшей мере одного щелочного предшественника и по меньшей мере одного кислотного предшественника, причем по меньшей мере один из двух содержит алюминий, при значении pH от 8,5 до 10,5, глубине реакции на первом этапе от 5 до 13%, при температуре от 20 до 90°C и в течение 2-30 минут; b) этап нагревания; c) второй этап осаждения путем добавления в суспензию по меньшей мере одного щелочного предшественника и по меньшей мере одного кислотного предшественника, причем по меньшей мере один из щелочного или кислотного предшественника содержит алюминий, при значении pH от 8,5 до 10,5 и глубине реакции на втором этапе от 87 до 95%; d) этап фильтрации; e) этап сушки; f) этап формования; g) этап термообработки; h) этап пропитки, активной гидрирующей-дегидрирующей фазой подложки, полученной на этапе g). Технический результат – катализатор, полученный указанным способом, имеет особенно выгодную пористую структуру и одновременно содержит активную фазу, подходящую для реакций гидродеметаллизации тяжелого сырья. 5 з.п. ф-лы, 8 табл., 6 пр., 2 ил.

Изобретение относится к способу получения катализатора гидроконверсии с бимодальной пористой структурой, с полностью смешиваемой активной фазой, содержащего по меньшей мере один металл группы VIB периодической системы элементов, необязательно по меньшей мере один металл группы VIII периодической системы элементов, необязательно фосфор и матрицу из обожженного оксида алюминия, имеющую содержание оксида алюминия более или равное 90% и содержание оксида кремния не более 10% по весу в эквиваленте SiO2 относительно массы матрицы, включающий этапы (а)–(j), раскрытые в п.1 формулы изобретения. Также изобретение относится к самому катализатору, получаемому таким способом, и к способу обработки тяжелого углеводородного сырья, включающему контактирование тяжелого углеводородного сырья с водородом и указанным катализатором, причем катализатор имеет удельную поверхность SBET от 150 до 250 м2/г, среднеобъемный диаметр мезопор от 12 до 25 нм включительно, среднеобъемный диаметр макропор от 250 до 1500 нм включительно, объем мезопор, измеренный интрузией на ртутном порозиметре, от 0,60 мл/г до 0,80 мл/г и полный объем пор, измеренный методом ртутной порозиметрии, от 0,80 до 1,00 мл/г и объем макропор от 10% до 40% от полного объема пор. Технический результат – осуществление более простого способа получения катализатора гидроконверсии с бимодальной пористой структурой с уменьшенным числом стадий и, как следствие этого, производственных расходов, приводящего к получению катализатора с улучшенной активностью, более выгодной пористой структурой для гидрообработки тяжелого сырья и требующего более низких рабочих температур. 3 н. и 13 з.п. ф-лы, 15 табл., 10 пр.

Изобретение относится к мезопористому и макропористому катализатору гидроконверсии с активной фазой, к способу получения такого катализатора, а также к способу гидроочистки тяжелого углеводородного сырья. Катализатор гидроконверсии содержит матрицу из обожженного оксида алюминия и активную фазу гидро-дегидрогенизации, включающую, по меньшей мере, молибден в качестве металла группы VIB Периодической системы элементов, в некоторых случаях, по меньшей мере, никель или кобальт в качестве металла группы VIII Периодической системы элементов, в некоторых случаях фосфор. Активная фаза полностью введена смешиванием путем совместного растирания, с указанной матрицей. Катализатор характеризуется удельной площадью поверхности SBET более 100 м2/г, медианным по объему диаметром мезопор от 12 до 25 нм, включая границы диапазона, медианным по объему диаметром макропор от 50 до 250 нм, включая границы диапазона, объемом мезопор, большим или равным 0,65 мл/г, общим объемом пор, большим или равным 0,75 мл/г, и объемом макропор от 15 до 35% общего объема пор. Способ получения катализатора заключается в том, что вначале проводят первую стадию осаждения в водной реакционной среде при температуре в диапазоне от 20 до 90°С в течение периода времени от 2 минут до 30 минут. Далее осуществляют нагревание суспензии до температуры, лежащей в диапазоне от 40 до 90°С в течение времени от 7 минут до 45 минут. После этого осуществляют вторую стадию осаждения суспензии при температуре, лежащей в диапазоне от 40 до 90°С, в течение периода времени от 2 минут до 50 минут. Затем проводят фильтрацию суспензии с получением геля оксида алюминия. После этого осуществляют стадию сушки геля оксида алюминия с получением порошка. Затем проводят стадию тепловой обработки порошка при температуре от 500 до 1000°С в течение периода времени от 2 до 10 часов, в присутствии или в отсутствие потока воздуха, содержащего до 60% об. воды, с получением обожженного пористого оксида алюминия. После этого проводят стадию совместного растирания обожженного пористого оксида алюминия и раствора по меньшей мере одного прекурсора металла активной фазы с получением пасты. Затем проводят стадию формования полученной пасты. После этого осуществляют стадию сушки формованной пасты при температуре, меньшей или равной 200°С, с получением высушенного катализатора. При необходимости, проводят стадию тепловой обработки высушенного катализатора при температуре, лежащей в диапазоне от 200 до 1000°С, в присутствии или в отсутствие воды. Способ гидроочистки тяжелого углеводородного сырья заключается в том, что углеводородное сырье вводят в контакт с водородом и вышеуказанным катализатором. Изобретение позволяет получить катализатор, обладающий большим объемом мезопор в сочетании со значительным объемом макропор, увеличенным диаметром мезопор и активной фазой гидро-дегидрогенизации. 3 н. и 15 з.п. ф-лы, 9 табл., 8 пр.

Изобретение касается способа получения катализатора, исходя из предшественника катализатора, содержащего носитель на основе оксида алюминия, и/или диоксида кремния-оксида алюминия, и/или цеолита и содержащего по меньшей мере один элемент VIB группы и, возможно, по меньшей мере один элемент VIII группы. Указанный способ включает пропитку указанного предшественника раствором (С1-С4)диалкилсукцината. Способ включает стадию пропитки (стадия 1) указанного высушенного, прокаленного или регенерированного предшественника по меньшей мере одним раствором, содержащим по меньшей мере одну карбоновую кислоту, отличную от уксусной кислоты, затем выдерживания и сушки при температуре меньше или равной 200°С, возможно, с последующей термообработкой при температуре меньше 350°С; за стадией 1 следует пропитка (стадия 2) раствором, содержащим по меньшей мере один (С1-С4)диалкилсукцинат, затем выдержка и сушка при температуре меньше 200°С без последующей стадии прокаливания. Предшественник катализатора, и/или раствор стадии 1, и/или раствор стадии 2 содержит фосфор. Катализатор применяют при гидрообработке и/или гидроконверсии. Технический результат – улучшение каталитической активности. 3 н. и 18 з.п. ф-лы, 1 ил., 2 табл., 8 пр.

Изобретение относится к катализатору гидроконверсии, содержащему цеолит, к способу его получения и к способу гидроконверсии углеводородных смесей, при котором применяют этот катализатор. Катализатор содержит носитель, включающий по меньшей мере одно связующее и цеолит, выбранный из FAU и/или BEA, фосфор, по меньшей мере один диалкилсукцинат C1-C4, уксусную кислоту и функциональную группу с гидрирующей-дегидрирующей способностью, содержащую по меньшей мере Mo и Ni. В спектре комбинационного рассеяния этого катализатора присутствуют характеристические полосы по меньшей мере одного гетерополианиона Кеггина в области 990 см-1, основная характеристическая полоса уксусной кислоты в области 896 см-1 и характеристические полосы указанного сукцината. Технический результат – расширение арсенала катализатора гидроконверсии. 3 н. и 18 з.п. ф-лы, 1 ил., 6 табл., 6 пр.

Изобретение относится к катализатору гидрообработки углеводородного сырья. Данный катализатор содержит аморфную подложку на основе оксида алюминия или алюмосиликата, по меньшей мере один С1-С4-диалкилсукцинат, лимонную кислоту, фосфор и гидрирующую-дегидрирующую группу, содержащую по меньшей мере один элемент из неблагородных элементов группы VIII и по меньшей мере один элемент группы VIB. Причем спектр комбинационного рассеяния катализатора содержит полосы 990 и/или 974 см-1, характеристические для по меньшей мере одного гетерополианиона Кеггина, характеристические полосы указанного сукцината и основные характеристические полосы лимонной кислоты, при этом количество фосфора составляет от 0,1 до 20 вес.%, количество элемента(ов) группы VIB составляет от 5 до 40 вес.%, количество элемента(ов) группы VIII составляет от 1 до 10 вес.%, причем количество оксида алюминия или алюмосиликата в подложке составляет более 25 вес.%, причем диалкилсукцинат и лимонная кислота присутствуют в количестве, которое соответствует мольному отношению диалкилсукцината к элементу(ам) группы VIB, составляющему от 0,15 до 2 моль/моль, и мольному отношению лимонной кислоты к элементу(ам) группы VIB, составляющему от 0,05 до 5 моль/моль. Предлагаемый катализатор обладает улучшенными по сравнению с традиционными катализаторами гидрообессеривающей и гидрирующей способностями. Изобретение также относится к способам получения такого катализатора и способу гидрообработки углеводородного сырья в присутствии данного катализатора. 5 н. и 18 з.п. ф-лы, 1 табл., 4 пр.

Изобретение относится к катализатору гидрообработки углеводородного сырья. Данный катализатор содержит аморфный носитель на основе оксида алюминия, фосфор, по меньшей мере один диалкил(C1-C4)сукцинат, уксусную кислоту и функциональную группу с гидрирующей/дегидрирующей способностью, содержащую по меньшей мере один элемент группы VIB и по меньшей мере один элемент группы VIII, выбранный из кобальта и/или никеля. При этом в спектре комбинационного рассеяния указанного катализатора присутствуют характеристические полосы по меньшей мере одного гетерополианиона Кеггина в области 990 и/или 974 см-1, характеристические полосы указанного сукцината и основная характеристическая полоса уксусной кислоты в области 896 см-1. Предлагаемый катализатор обладает повышенной активностью в процессах гидрообработки за счет синергического действия комбинации уксусной кислоты и диметилсукцината. Изобретение также относится к способу получения такого катализатора и катализатору, полученному этим способом, а также способу гидрообработки углеводородного сырья в присутствии такого катализатора. 4 н. и 20 з.п. ф-лы, 2 ил., 5 табл., 12 пр.

Изобретение относится к катализатору гидродеметаллирования и гидродесульфуризации, к каталитической системе и способу гидрообработки тяжелого углеводородного сырья

 


Наверх