Патенты автора Добровольская Ирина Петровна (RU)

Настоящее изобретение относится к способу получения термопластичного нетканого материала на основе микро- и нановолокон из ароматических полиимидов и может найти применение в получении материалов для фильтрации горячих жидких и газообразных агрессивных сред, разделительных мембран, для получения углеродных нановолокон, в качестве матриц для клеточных технологий. Указанный способ включает синтез полиамидокислоты поликонденсацией диангидрида 3,3′,4,4′-дифенилоксидтетракарбоновой кислоты или диангидрида 1,3-бис(3′,4-дикарбоксифенокси)бензола и 4,4′-бис(4′-аминофенокси)дифенилсульфона или 4,4′-бис(4′-аминофенокси)дифенила в апротонном растворителе, осаждение полиамидокислоты в воду, обработку водным раствором триэтиламина или аммиака с получением соли полиамидокислоты, приготовление водно-спиртового раствора соли полиамидокислоты с концентрацией 5-10 мас.% и подачу раствора через электрод-фильеру в электрическое поле с напряжением 10-20 кВ, затем осажденный на приемном электроде материал обрабатывают при температуре 200-250 °С в течение 30-60 мин. Полученный продукт представляет собой нетканый материал, состоящий из микро- и нановолокон ароматического термопластичного полиэфиримида диаметром 150 - 1000 нм с температурой разложения в инертной среде 510-530 °С и температурой стеклования 217-230°С. Указанный способ позволяет получать термопластичный нетканый материал на основе микро- и нановолокон из ароматического полиэфиримида методом электроформования менее энергозатратно и без экологической нагрузки. 4 ил., 4 пр.

Изобретение относится к химии высокомолекулярных соединений, а именно к композиционным полимерным раневым покрытиям на основе нановолокон. Изобретение предназначено для использования в медицине, ветеринарии и фармакологии в качестве раневых покрытий, в тканевой инженерии - в качестве матриц для клеточных технологий, а также в регенеративной медицине. Раневое покрытие состоит из двух слоев, верхний из которых представляет собой пористый пленочный материал с размером пор 10-1000 мкм, толщиной 0,1-1 мм, на основе нановолокон диаметром 0,1-1 мкм из нерезорбируемого сополимера ε-капролактама и гексаметилендиаминадипината с соотношением мономерных звеньев от 60:40 до 40:60 мас.%, а нижний предназначенный для непосредственного контакта с раной слой толщиной 0,1-1 мм с размером пор 10-500 мкм выполнен на основе композиционных нановолокон диаметром 0,1-0,5 мкм из резорбируемого полимера хитозана со степенью деацетилирования 70-95 %, молекулярной массой 150-400 кДа, содержащих в качестве наполнителя 0,1-30 мас.% резорбируемых нанофибрилл хитина с поперечным размером 15-20 нм и продольным 400-500 нм. Раневые покрытия биосовместимы, прочны и в то же время эластичны в биологически активных средах, обеспечивают паро- и газообмен при контакте с раневой поверхностью, атравматичны, прилегающий к ране слой подвергается полной биорезорбции в течение нескольких недель, продукты биорезорбции нетоксичны. 2 табл., 4 ил.

Изобретение относится к химии высокомолекулярных соединений и может найти применение в качестве материалов для фильтрации горячих жидких и газообразных технологических сред, разделительных мембран, а также для получения углеродных нановолокон. Описан способ получения материала на основе нановолокон из полиимида, включающий электроформование раствора полиамидокислоты в растворителе, в котором из раствора, содержащего не более 12 мас. % полиамидокислоты в апротонном растворителе, получают пленку методом формования через щелевую фильеру на подложку, которую снимают с подложки и в количестве, обеспечивающем содержание полиамидокислоты в растворе 12-20 мас. %, растворяют в смеси апротонный растворитель: бензоидный растворитель, при содержании бензоидного растворителя 20-70 об. %, раствор при комнатной температуре подают через электрод-фильеру в электрическое поле с напряжением 15-35 кВ, материал, осажденный на аноде, термообрабатывают при температуре 370-420°С в течение 60 мин, целевой продукт состоит из нановолокон ароматического полиимида диаметром 50-700 нм, имеющий температуру разложения в инертной среде выше 500°С в смеси. Технический результат: получение материала на основе нановолокон из ароматического полиимида методом электроформования полиамидокислоты при комнатной температуре. 6 ил., 5 пр.
Изобретение относится к области получения углеродных адсорбентов. Описан способ получения композитного волокнистого адсорбента, характеризующийся тем, что в качестве исходных компонентов берут гидролизный лигнин и полиакрилонитрил, готовят их смесь при соотношении 80:20 по массе, эту смесь помещают в пиролизер, осуществляют его продув током азота, после этого ведут прогрев смеси в пиролизере со скоростью подъема температуры 15 град·мин-1 до достижения температуры смеси 800°C, поддерживают эту температуру в течение 0,5 часа, прекращают прогрев и ведут охлаждение карбонизованных волокон до комнатной температуры в атмосфере азота со скоростью его тока 50 см3·мин-1. Технический результат: получение адсорбента на основе отходов деревоперерабатывающего производства в больших количествах, обладающих повышенной термостойкостью и прочностью.

Изобретение относится к химии высокомолекулярных соединений и предназначено для использования в медицине в качестве раневых покрытий, гемостатических материалов, тампонирующих материалов, объемозамещающих медицинских материалов, матриц для клеточных технологий и тканевой инженерии. Способ получения биосовместимого биодеградируемого пористого композиционного материала включает смешивание предварительно диспергированных в водной среде с рН=5-7 в ультразвуковом поле с частотой 20-100 кГц в течение 5-60 мин нанофибрилл хитина с хитозаном со степенью деацетилирования 60-95%, молекулярной массой 50-450 кДа в количестве, соответствующем его концентрации в растворе 0,1-10 мас.%, при этом количество наполнителя составляет 0,1-50% от массы хитозана. Затем полученную смесь интенсивно перемешивают при температуре 20-50°C в течение 20-60 мин, добавляют концентрированную кислоту в количестве, соответствующем получению в смеси водного раствора кислоты концентрацией 0,1-5%, интенсивно перемешивают смесь при температуре 20-50°C в течение 20-250 мин и добавляют лекарственные средства, пластификаторы и биорезорбируемые полимеры. Полученную смесь перемешивают при температуре 20-50°C в течение 20-60 мин, затем охлаждают до температуры -0,1 - -196°C, удаляют растворитель в вакууме, обрабатывают полученный материал нейтрализующим реагентом, промывают водой до рН=6-7 и высушивают или подвергают термообработке при температуре 50-200°C в течение 10-360 мин. Полученный пористый материал с системой сквозных пор размером 1-1000 мкм пропитывают лекарственными средствами, пластификаторами, биорезорбируемыми полимерами. Полученный материал обладает сквозной пористой структурой, сохраняет свою форму и размеры в жидких средах, не токсичен, подвергается полной биодеградации в течение нескольких недель. 6 з.п. ф-лы, 9 ил., 1 табл., 10 пр.

Группа изобретений относится к медицинской технике и может быть использована в области трансплантологии для замены в организме трубчатых органов. Описан трубчатый имплантат органов человека и животных, выполненный из нетканого пористого полимерного материала, сформированного из нано- и/или микроволокон диаметром 50-8000 нм из алифатического спирторастворимого (со)полиамида, с внутренним диаметром трубки 0,2-150 мм, толщиной стенки 0,05-5 мм, диаметром пор 0,1-500 мкм. Описан способ получения волокна, заключающийся в приготовлении формовочного 3-40%-ного раствора алифатического спирторастворимого (со)полимера в спирте или в водно-спиртовой смеси с содержанием спирта 40-99 об.% при температуре 20-100°C, который фильтруют, обезвоздушивают, подают через электрод-фильеру в электрическое поле с напряженностью E=1,5×104 - 8,0×105 В/м на вращающийся со скоростью 0,1-6000 об/мин цилиндрический электрод диаметром 0,2-100,0 мм, при этом на поверхности электрода получают нетканый пористый материал, сформированный из нано- и микроволокон, затем целевой трубчатый имплантат снимают с электрода, сушат. Трубчатый имплантат биоинертный, биосовместимый, сохраняет прочность и эластичность в водной среде. 2 н. и 23 з.п. ф-лы, 5 ил., 73 пр.
Изобретение относится к области получения композиционного волокна на основе гидролизного лигнина с полиакрилонитрилом и может быть использовано для формирования прекурсорных композитных волокон в качестве исходного материала для образования углеродных волокон повышенной прочности и термостойкости. Мелкодисперсный гидролизный лигнин растворяют в диметилсульфоксиде до полного набухания при комнатной температуре в течение 10-20 ч и смешивают с раствором полиакрилонитрила в диметилсульфоксиде до образования гомогенного и формовочного раствора, содержащего 70-80% мас. гидролизного лигнина. Раствор фильтруют, дегазируют, загружают в бункер фильеры и подают в осадительную ванну установки для приготовления композитных волокон. Использование изобретения обеспечивает повышение величины утилизируемого гидролизного лигнина, повышение прочности прекурсорного волокна до 50 МПа, повышение термостойкости до 30-40% при 800°С по сравнению с 20% для чистого гидролизного лигнина, улучшение экологии производства. 1 пр.

Изобретение относится к способу получения биосовместимого биодеградируемого композиционного волокна и к волокну, полученному таким способом. Способ получения волокна заключается в смешивании предварительно диспергированного в водной среде с рН 5-7 в ультразвуковом поле с частотой v=20-100 кГц в течение 5-60 мин гидросиликатного наполнителя с хитозаном в количестве, соответствующем его концентрации в растворе 1 - 4 мас.%, при этом количество наполнителя составляет 0,05 - 2% от массы хитозана. Полученную смесь интенсивно перемешивают при температуре 20-50°С в течение 20 - 60 мин. Затем добавляют концентрированную уксусную кислоту в количестве, соответствующем получению в смеси водного раствора уксусной кислоты с концентрацией 1-8 мас.%. Смесь интенсивно перемешивают при температуре 20 - 50°С в течение 20 - 250 мин. Смесь фильтруют, обезвоздушивают. Волокно формуют через фильеру, в спиртовой или спиртово-щелочной осадитель, при этом величину скорости сдвига раствора в плоскости поперечного сечения капилляра при прохождении раствора через фильеру выбирают из интервала 1,0-103 c-1. Волокно вытягивают на 10-120%, промывают водой, сушат при температуре 20 - 50°С. Волокно включает хитозан и гидросиликатный наполнитель - галлуазит, хризотил, монтмориллонит - в виде наночастиц в количестве 0,05-2% от массы хитозана. Волокно имеет однофазную гомогенную структуру, соответствующую основной форме хитозана. Технический результат - получение биосовместимого биодеградируемого композиционного эластичного и прочного волокна на основе хитозана для использования в медицине и биотехнологии, в частности, в хирургических шовных нитях и в клеточных технологиях. 2 н.п. ф-лы., 3 ил., 8 пр.

Изобретение относится к процессам получения пористых пленочных материалов с размером пор микрометрового диапазона из алифатических сополиамидов. Способ включат получение раствора сополимера ε-капролактама и полигексаметиленадипинамида с соотношением компонентов 40:60-60:40 мас.% или сополимера полигексаметиленадипинамида и полигексаметиленсебацинамида с соотношением компонентов 60:40 мас.% концентрацией 10-30 мас.% при Т=50-70°C в спирто-водной смеси с содержанием этанола 45-97 об.%, фильтрацию раствора, его обезвоздушивание и подачу через щелевую фильеру на подложку, выдержку на воздухе сформованного раствора при Т=20-40°C в течение 30-150 сек, осаждение в воде при Т=20°C в течение 1-5 мин, сушку полученной пленки при Т=20-70°C. Пленка характеризуется однородной пористой структурой, размером пор D=5-10 мкм, имеет толщину 100 мкм, прочность на разрыв σ=4,4 МПа, удлинение ε=52%, водопроницаемость В=233 кг/м2час. Полученный материал может быть использован для фильтрации жидких и газообразных сред, основой для раневых покрытий, матриц для адгезии и пролиферации стволовых мезенхимных клеток. 4 ил., 4 табл., 7 пр.

Изобретение относится к химии высокомолекулярных соединений и может найти применение в качестве матриц в тканевой инженерии

Изобретение относится к процессам получения нановолокон методом электроформования, в частности нановолокон с диаметром d=50-4500 нм из алифатических сополиамидов

 


Наверх