Патенты автора Коломийченко Олег Васильевич (RU)

Группа изобретений относится к нефтегазовой промышленности и может быть использована для необратимой внутрипластовой молекулярной модификации глубокозалегаемых тяжелых углеводородов. Устройство содержит емкость для воды, соединенную трубопроводом, в который встроен насос, с генератором ультра-сверхкритической воды, емкость для коллоидного раствора, насыщенного микрочастицами металлов, а также размещенную в скважине колонну теплоизолированных насосно-компрессорных труб (НКТ), в нижней части которой установлена сопловая насадка. При этом устройство оснащено реактором окисления. Первый вход реактора окисления связан с выходом генератора ультра-сверхкритической воды, а второй - посредством трубопровода, в который встроен насос - с емкостью для коллоидного раствора с микрочастицами металлов. Выход реактора окисления соединен с колонной теплоизолированных НКТ. Сопловая насадка состоит из полого корпуса, в котором выполнены радиальные отверстия, упора в полости корпуса в верхней его части, гильзы, установленной с возможностью осевого возвратно-поступательного перемещения в полости корпуса и периодического контакта с упором. Сопло закреплено на гильзе, на которой выполнены радиальные отверстия, имеющие возможность совмещения с радиальными отверстиями корпуса при отборе из продуктивного пласта водонефтяной эмульсии и не совмещенные друг с другом при нагнетании рабочего агента через НКТ и сопловую насадку в продуктивный пласт. Способ включает приготовление на дневной поверхности скважины рабочего агента, в виде воды, насыщенной наноразмерным катализатором и его доставку по расположенной в скважине колонне теплоизолированных НКТ в продуктивный пласт скважины. Причем закачивание рабочего агента в продуктивный пласт осуществляют инжектированием его через проходное сечение сопловой насадки, расположенной в нижней части колонны НКТ, с последующим отбором и доставкой на дневную поверхность скважины из продуктивного пласта водонефтяной эмульсии. При этом при приготовлении на дневной поверхности скважины рабочего агента, в него дополнительно вводят микрочастицы металлов, после чего в реакторе проводят реакцию окисления компонентов рабочего агента с образованием наноразмерных частиц оксидов металлов и водорода. После чего разогретый до температуры 650-600°С, рабочий агент инжектируют в продуктивный пласт через проходное сечение сопловой насадки, в котором в результате частичной внутрипластовой каталитической газификации некоторой части тяжелых углеводородов генерируется сингаз для повышения эффективности внутрипластовой молекулярной модификации этих тяжелых углеводородов. Отбор из продуктивного пласта водонефтяной эмульсии осуществляют через сопловую насадку, увеличивая ее проходное сечение по сравнению с проходным сечением при закачке рабочего агента. Техническим результатом является повышение эффективности внутрипластового необратимого улучшения качества углеводородов и повышение эффективности их отбора из продуктивного пласта на дневную поверхность скважины. 2 н. и 4 з.п. ф-лы, 3 табл., 4 ил.

Изобретение относится к конструкциям насосно-компрессорных труб (НКТ) с теплоизоляционным покрытием (ТИП) и может быть использовано при строительстве из стыкуемых друг с другом НКТ теплоизолированных колонн глубиной до 5000 метров в нефтегазовой промышленности и геотермальной энергетике. Технический результат - создание НКТ с ТИП, обладающих высокими теплоизолирующими свойствами, надежным и герметичным соединением в условиях действия одновременно высоких температур и давления и длительным сроком эксплуатации. Насосно-компрессорная труба содержит трубу, на наружной поверхности которой размещено теплоизоляционное покрытие, закрытое сверху защитным кожухом, две теплоизолированные зоны захвата, предназначенные для захвата трубы гидравлическим ключом или слайдером при монтаже-демонтаже насосно-компрессорной трубы, а также размещенные у торцов трубы соединительные элементы, предназначенные для стыковки труб при сборке их в колонну. Каждая зона захвата образована диском, надетым на трубу и скрепленным с ней, кольцом, охватывающим трубу и прикрепленным к диску, а также пластинами, прикрепленными к наружной поверхности трубы и внутренней поверхности кольца, защитный кожух прикреплен к кольцам зон захвата и оснащен гофрированным участком для компенсации термических деформаций, а каждый соединительный элемент трубы выполнен в виде гильзы, закрепленной на наружной поверхности трубы у ее торца и оснащенной поводками, имеющими возможность контакта со стягивающей муфтой. 5 з.п. ф-лы, 3 ил.

Изобретение относится к устройствам для разделения ствола скважины на изолированные друг от друга участки. Техническим результатом является повышение эффективности работы. Устройство для разделения ствола скважины на изолированные друг от друга участки содержит полый корпус, имеющий возможность монтажа на насосно-компрессорной трубе, размещенное на корпусе с возможностью осевого перемещения уплотнение, закрепленный на корпусе над уплотнением упор и установленный на корпусе под уплотнением с возможностью осевого перемещения толкатель, а также сопло, закрепленное на нижней части корпуса и сообщенное с его полостью. Уплотнение выполнено в виде основы из базальтового волокна, насыщенного наполнителем в виде микрочастиц металлов или наночастиц оксидов металлов. Устройство оснащено, как минимум, двумя проставками, помещенными в уплотнение, причем одна из проставок изготовлена из материала, температура плавления которого не превышает 450°, а другая изготовлена из материала, температура плавления которого не ниже 1200°. 3 з.п. ф-лы, 5 ил.

Группа изобретений относится к нефтегазовой промышленности и может быть использована для интенсификации добычи нефти низкопроницаемых пород. Способ включает приготовление рабочих агентов, инжектирование их по продуктопроводу в продуктивный нефтекерогеносодержащий пласт. При этом перед высокотемпературным термохимическим воздействием на продуктивный пласт осуществляют восстановление естественной трещиноватости и естественных флюидопроводящих каналов в призабойной зоне продуктивного пласта путем низкотемпературного термохимического воздействия на него рабочим агентом с последующим закреплением каналов нанопроппантом в результате низкотемпературного термохимокаталитического воздействия с использованием рабочего агента. Подвергают продуктивный пласт кислотному термохимическому воздействию с использованием рабочего агента с последующими тепловым воздействием на продуктивный пласт и проведением в нем внутрипластовых тепловых взрывов. Причем после осуществления основного высокотемпературного термохимического воздействия и перед отбором углеводородов осуществляют термокаталитическое воздействие на продуктивный пласт для внутрипластового облагораживания углеводородов с последующим осуществлением на продуктивный пласт водородно-термокаталитического воздействия с использованием каталитического нанопроппанта для увеличения степени полноты молекулярной модификации нефти низкопроницаемых пород, битуминозной нефти и керогена в более ценные углеводороды и предупреждения компакции продуктивного пласта за счет закрепления флюидопроводящих каналов продуктивного пласта нанопроппантом. После чего осуществляют термогидроуглекислотное воздействие на продуктивный пласт с последующим отбором по продуктопроводу модифицированных и частично облагороженных углеводородов на дневную поверхность. При этом в процессе доставки углеводородов на дневную поверхность осуществляют их дополнительное частичное облагораживание за счет пропускания через проточный реактор, образованный пространством в продуктопроводе между колонной насосно-компрессорных труб (НКТ) и коаксиально размещенной в ней безмуфтовой трубой. Технологический комплекс для добычи углеводородов включает наземный генератор воды, имеющей давление выше 28,5 МПа и температуру выше 593˚С, продуктопровод, выполненный в виде колонны теплоизолированных НКТ, размещенных в скважине до ее забоя. Причем генератор имеет возможность подключения выходом к колонне НКТ. Технологический комплекс оснащен смесителем, установкой для водоподготовки, подключенной выходом к входу генератора, а также реактором окисления, реактором риформинга органических соединений и блоком обогащения органическими соединениями, подсоединенным выходом к первому входу реактора риформинга органических соединений, ко второму входу которого имеет возможность подсоединения генератор. При этом выход реактора риформинга имеет возможность подсоединения к колонне НКТ. К входу реактора окисления подсоединен генератор. Выход реактора окисления имеет возможность подсоединения к колонне НКТ. При этом в колонне НКТ коаксиально расположена с зазором безмуфтовая труба, к которой имеет возможность подсоединения емкость для холодной воды или емкость для окислителя. Смеситель имеет возможность подсоединения входом к генератору, а выходом - к колонне НКТ. Техническим результатом является расширение функциональных возможностей добычи углеводородов за счет обеспечения эффективной их добычи из низкопроницаемых нефтекерогеносодержащих пластов, а также повышение качества добываемых углеводородов за счет молекулярной конверсии нефти низкопроницаемых пород и битуминозной нефти в более легкие нефти. 2 н. и 29 з.п. ф-лы, 5 табл., 18 ил.

Группа изобретений относится к заколонным пакерам. Техническим результатом является повышение эффективности изолирования затрубного пространства. 3аколонный пакер включает пакерующий модуль, состоящий из пакерующих элементов, размещенных на наружной поверхности обсадной трубы. Каждый пакерующий элемент представляет собой основу из металла или сплава, имеющего температуру плавления не выше 700°С, и введенные в основу наполнители, температура плавления которых выше температуры подаваемого в призабойную зону рабочего агента. В качестве металла основы, как минимум, одного пакерующего элемента использован висмут. Также заколонный пакер может быть оснащен дополнительными пакерующими модулями. 2 н. и 6 з.п. ф-лы, 3 ил.

Изобретение относится к оборудованию для нефтегазовой промышленности и может быть использовано для генерации ультра-сверхкритического рабочего агента, подаваемого в нефтекерогеносодержащие пласты для повышения их отдачи. Устройство представляет собой трубчатый корпус, в котором размещены выполненный в виде полого цилиндра реактор генерации ультра-сверхкритического рабочего агента и камера сгорания. Объем корпуса модуля генерации разделен перфорированным экраном-отражателем на две сообщающиеся друг с другом полости, в одной из полостей продольно смонтирован реактор, на выходе которого установлен регулятор давления сгенерированного ультра-сверхкритического рабочего агента. Пространство между наружной поверхностью реактора, корпусом и перфорированным экраном-отражателем заполнено высокопористым ячеистым материалом, а в другой полости скомпонована камера сгорания, выполненная в виде инфракрасной горелки. При этом устройство оснащено модулем рекуперации тепла топочных газов, выполненным в виде корпуса, в котором коаксиально с зазором размещена теплообменная труба, выход которой соединен с входом реактора, полость между корпусом и теплообменной трубой заполнена высокопористым ячеистым материалом и оснащена входным и выходным каналами, первый из которых соединен с каналом отвода топочных газов модуля генерации, а выходной канал имеет возможность соединения с блоком каталитической очистки топочных газов. 17 з.п. ф-лы, 8 ил.

Группа изобретений относится к заколонным пакерам. Техническим результатом является повышение эффективности изоляции затрубного пространства. 3аколонный пакер включает пакерующий модуль, состоящий из пакерующих элементов, размещенных на наружной поверхности обсадной трубы. В первом варианте каждый пакерующий элемент представляет собой основу из металла или сплава, имеющего температуру плавления не выше 700°C. В основу пакерующих элементов введены наполнители. В качестве основы как минимум одного пакерующего элемента использован висмут. Во втором варианте пакер оснащен дополнительными пакетирующими модулями, размещенными на наружной поверхности обсадной трубы. Пакерующие элементы разных модулей имеют разную температуру плавления, не превышающую 700°C. Пакерующие элементы одного из модулей выполнены из висмута. 2 н. и 4 з.п. ф-лы, 3 ил.

Изобретение относится к области добычи нефти и газа. Техническим результатом является повышение рабочих давления и температуры. Устройство для разобщения отдельных участков ствола скважины содержит опорный элемент, уплотнительный элемент, установленный концентрично НКТ между нею и обсадной трубой, подвижный элемент сжатия уплотнительного элемента, установленный концентрично НКТ под элементом сжатия. Устройство содержит два отрезка НКТ, выполненных из титана по обе стороны от опорного элемента, опорную сопло-муфту в нижней части НКТ, а уплотнительный элемент выполнен из базальтового волокна, имеющего диаметр от 0,5 до 3,5 мкм, при этом базальтовое волокно насыщено частицами металла. 10 з.п. ф-лы, 3 ил., 1 табл.

Группа изобретений относится к нефтегазовой промышленности. Технический результат интенсификация добычи глубокозалегающих природных битумов, тяжелых нефтей и нефти низкопроницаемых пород, а также для внутрипластовой генерации синтетических углеводородов из твердого органического вещества - керогена. Способ воздействия на продуктивные пласты, содержащие углеводороды и/или твердые органические вещества, включает формирование рабочего агента, в качестве которого используют воду, находящуюся преимущественно в сверхкритическом состоянии (СК-вода), и последующее самопроизвольное инжектирование рабочего агента в продуктивные пласты. Причем рабочий агент предварительно формируют на дневной поверхности скважины в наземном генераторе СК-воды, содержащем узел обогащения формируемой СК-воды катализатором экзотермической реакции окисления. После этого обогащенный указанным катализатором рабочий агент подают по продуктопроводу с теплоизоляцией в скважину и/или на забой скважины в зону осуществления экзотермической реакции окисления в СК-воде, при этом в скважину и/или на забой скважины подают по отдельным продуктопроводам реагирующие вещества - органические соединения и окислитель органических соединений, обеспечивающие дополнительный нагрев и дополнительное повышение давления указанного выше предварительно сформированного рабочего агента за счет экзотермической реакции окисления в СК-воде с образованием диоксида углерода (CO2), находящегося в сверхкритическом состоянии, затем окончательно сформированный рабочий агент самопроизвольно инжектируется в пласт. 2 н. и 9 з.п. ф-лы, 2 ил.

Изобретение относится к области нефтедобычи и может быть использовано для добычи природных битумов, сверхтяжелых, тяжелых, высоковязких и вязких нефтей. Устройство для осуществления теплового воздействия на пласты, содержащие углеводороды (УВ) и твердые органические вещества (ТОВ), характеризуется тем, что оно представляет из себя забойную каталитическую сборку (ЗКС). ЗКС включает забойный каталитический реактор, теплообменник, блок предварительного разогрева катализатора в забойном каталитическом реакторе, проточный пакер с эластичными элементами, продуктопровод подачи в забойный каталитический реактор метановоздушной топливной смеси, продуктопровод доставки в проточный пакер и на забой скважины воды, а также продуктопровод доставки топочных газов из забоя скважины на ее дневную поверхность. При этом забойный каталитический реактор, теплообменник и блок предварительного разогрева катализатора в забойном каталитическом реакторе образуют забойный непрямой каталитический парогенератор (ЗНКПГ). Техническим результатом является повышение коэффициента извлечения УВ, комплексное освоение ресурсного потенциала нефтеносных сланцевых плеев, а также повышение эффективности освоения тяжелых и трудноизвлекаемых запасов УВ, залегаемых на значительных глубинах. 19 з.п. ф-лы, 2 ил., 1 табл.

Изобретение относится к области нефтедобычи, а именно к термическим способам добычи нефти, и может быть использовано для разработки нефтяных залежей с высоковязкой и тяжелой нефтью, а также для извлечения нефти из керогена

 


Наверх