Патенты автора Рымаренко Константин Васильевич (RU)

Изобретение относится к области нефтегазодобывающей промышленности, в частности к области эксплуатации горизонтальных и наклонно-направленных скважин, и может быть использовано для определения профиля приемистости нагнетальных скважин. Способ включает использование распределенных внутри скважины источников изменения температуры флюида и датчиков измерения изменения этой температуры, по которым определяют характеристики притока пластового флюида. При этом перед началом измерения осуществляют остановку скважины, после чего выполняют изменение температуры флюида путем создания тепловой метки с помощью нагревателя в виде обмотки греющего кабеля, расположенного на осесимметричных мандрелях в рабочих зонах, и распределенного датчика температуры в виде оптоволокна, расположенного на осесимметричных мандрелях между кольцами греющего кабеля или кольцами, расположенными после греющего кабеля, а затем, через интервал времени достаточный для появления тепловых меток в данной рабочей зоне, осуществляют запуск скважины, после чего измеряют скорость движения созданных тепловых меток в стволе скважины в определенной рабочей зоне, а по скорости движения указанных меток и заранее известному диаметру трубы скважины определяют дебит в различных рабочих зонах притока флюида, а за дебит скважины принимают результат, полученный в ближайшей рабочей зоне с максимальным дебитом перед устьем скважины. Технический результат заключается в расширении арсенала средств для определения дебита. 5 з.п. ф-лы, 3 ил.

Изобретение относится к области нефтедобывающей промышленности, в частности к оценке уровня жидкости в нефтяных скважинах, и может быть использовано для определения динамического уровня скважинной жидкости. Техническим результатом является создание способа способного к измерению высокоточного уровня динамической жидкости в мало- и среднетемпературных скважинах. Способ включает периодический опрос размещенных вдоль ствола скважины системы датчиков температуры, на основании данных которых формируют термограмму состояния затрубной жидкости и вычисляют градиент температуры в каждой измеряемой точке, при этом точка с максимальным значением градиента будет являться границей раздела фазовых сред жидкость-газ и соответствовать уровню динамической жидкости. При этом в затрубном пространстве скважины размещают локальные и/или распределенные источники изменения температуры затрубной жидкости, которые формируют статические зоны нагрева и/или охлаждения, а точку с максимальным значением градиента фиксируют либо в процессе нагрева или возврата к начальной геотерме, либо в процессе охлаждения или возврата к начальной геотерме, либо в процессе одновременного нагрева и охлаждения, и возврата к начальной геотерме. 3 з.п. ф-лы, 10 ил.

Изобретение относится к области нефтегазодобывающей промышленности, в частности к области эксплуатации малодебитных горизонтальных и наклонно-направленных скважин, и может быть использовано для определения профиля приемистости нагнетальных скважин. Заявляется способ, включающий использование распределенных внутри скважины источников изменения температуры флюида и датчиков измерения изменения этой температуры, по которым определяют характеристики притока пластового флюида. При этом перед началом измерения осуществляют остановку скважины, после чего выполняют изменение температуры флюида, путем подачи рабочего газа через распределенные сужающие устройства в рабочей зоне, а затем, через интервал времени, достаточный для охлаждения флюида в данной рабочей зоне, осуществляют запуск скважины, после чего измеряют скорость движения охлажденной метки в стволе скважины в определенной рабочей зоне с помощью распределенного источника измерения температуры, и по скорости движения охлажденной метки и заранее известному диаметру трубы скважины определяют дебит в различных рабочих зонах притока флюида, а за дебит скважины принимают результат, полученной в ближайшей рабочей зоне с максимальным дебитом перед устьем скважины. 6 з.п. ф-лы, 2 ил.

Изобретение относится к горнодобывающей промышленности, а именно к способам гидроразрыва нефтяного или угольного пласта, и может быть использовано, например, в области добычи жидких и газообразных полезных ископаемых, в угольной промышленности при дегазации пластов угля

 


Наверх