Патенты автора Авдеев Константин Алексеевич (RU)

Изобретение может быть использовано в термической переработке газообразных, жидких и твердых отходов. Способ термической переработки отходов включает получение перегретого водяного пара в детонационном пароперегревателе (3), при этом обеспечивают подачу сверхзвуковых струй перегретого водяного пара в реактор (1), сопровождаемую ударными волнами, с формированием в реакторе (1) устойчивых вихревых структур при поддержании повышенного давления для предотвращения подсоса атмосферного воздуха. Обеспечивают подачу отходов в реактор (1) непрерывно или порциями. Осуществляют переработку отходов в реакторе (1) с помощью перегретого водяного пара с предотвращением агломерации частиц отходов за счет воздействия ударными волнами. Отвод продуктов переработки отходов из реактора (1) осуществляют непрерывно или порциями. Перегретый водяной пар подают в реактор (1) в виде непрерывных сверхзвуковых струй, так что в реакторе (1) формируются устойчивые стационарные вихревые структуры. Непрерывные сверхзвуковые струи перегретого водяного пара получают благодаря комбинированному воздействию со стороны детонационных волн, непрерывно циркулирующих в детонационном пароперегревателе (3) по смеси горючее-окислитель, и со стороны теплонагруженных стенок детонационного пароперегревателя, на струи водяного пара, или на жидкие струи или пристеночные пленки питательной воды, непрерывно подаваемые в детонационный пароперегреватель (3). А именно непрерывные сверхзвуковые струи сильно перегретого водяного пара получаются благодаря термомеханическому воздействию детонационных волн, заключающемуся в перегреве водяного пара, а также в аэродинамическом дроблении жидких струй и пристеночных пленок на капли питательной воды, испарении капель питательной воды и перегреве образующегося водяного пара, и благодаря термическому воздействию теплонагруженных стенок детонационного пароперегревателя (3), заключающемуся в передаче тепла от теплонагруженных стенок к струям водяного пара и/или к жидким струям, и/или к пристеночным пленкам. Непрерывное поступление питательной воды в детонационный пароперегреватель (3) в виде струй водяного пара, или жидких струй, или пристеночных пленок обеспечивает охлаждение теплонагруженных стенок детонационного пароперегревателя. Отходы подвергаются аэродинамической фрагментации под действием как непрерывных сверхзвуковых струй перегретого водяного пара, так и под действием ударных волн, присоединенных к детонационным волнам, непрерывно циркулирующим в детонационном пароперегревателе (3). Продукты переработки отходов, отводимые из реактора, содержат горючий газ, используемый в качестве горючего в смеси горючее-окислитель и/или направляемый потребителю, а также жидкие кислоты и твердый нетоксичный остаток, направляемые потребителю. В качестве резервного горючего может быть использован, например, природный газ. Раскрыто устройство для термической переработки отходов. Технический результат заключается в повышении производительности высокотемпературной переработки отходов с помощью сильно перегретого водяного пара с получением горючего газа, кислот и твердого нетоксичного остатка без вредного воздействия на окружающую среду. 2 н. и 6 з.п. ф-лы, 2 ил.

Изобретение относится к способам и устройствам для получения алкенов и алкинов, например, этилена и ацетилена из доступного газообразного исходного сырья, например, метана, этана, пропана и других предельных углеводородов. Предложен способ конверсии газообразного исходного сырья в алкены и алкины, в котором осуществляют подачу в проточную импульсно-детонационную трубу газообразного исходного сырья с одновременной или последующей подачей одновременно горючего и окислителя, заполнение проточной импульсно-детонационной трубы и частично или полностью проточного реактора газообразным исходным сырьем, горючим и окислителем, циклическое инициирование детонационного горения с обеспечением разогрева газообразного исходного сырья до температуры пиролиза в проточной импульсно-детонационной трубе в результате его сжатия в бегущей детонационной волне, где газообразное исходное сырье, подвергаемое сжатию и разогреву в бегущей детонационной волне, разбавлено горючим и окислителем и в проточном реакторе в результате сжатия газообразного исходного сырья в бегущей ударной волне, где газообразное исходное сырье, подвергаемое сжатию и разогреву в бегущей ударной волне, не разбавлено горючим и окислителем, или в бегущей детонационной волне, где газообразное исходное сырье, подвергаемое сжатию и разогреву в бегущей детонационной волне, разбавлено горючим и окислителем. Предложенный способ реализован в устройстве, включающем камеру сгорания, проточный реактор, систему охлаждения, системы подачи горючего и окислителя, систему зажигания и систему подачи газообразного исходного сырья, в котором камера сгорания выполнена в виде проточной импульсно-детонационной трубы с системой охлаждения, включающей последовательно расположенные камеру смешения и зажигания, содержащую коллекторы подачи горючего, окислителя и газообразного исходного сырья, ускоритель пламени, обеспечивающий переход горения в детонацию, и гладкую трубу, с установленным в её выходном сечении проточным реактором. Технический результат - обеспечение способа и устройства для получения алкинов (ацетилен) и алкенов (этилен) из доступного газообразного исходного сырья (например, метана и пропана). 2 н. и 3 з.п. ф-лы, 1 ил., 3 пр.

Изобретение относится к воздушно-реактивным двигателям, устанавливаемым на концах лопастей несущего винта реактивного вертолета. Предложен способ организации рабочего процесса в импульсно-детонационном тяговом модуле для реактивного вертолета, размещенном на конце лопасти несущего винта, включающий подачу топлива, смешение топлива с воздухом, заполнение камеры сгорания горючей смесью, возникновение детонационной волны, расширение продуктов детонации в горелочном тракте и истечение продуктов детонации через сопло для создания реактивной тяги, в котором на горячие внутренние стенки камеры сгорания жидкое топливо подается циклически в виде струй, причем струи ориентированы так, чтобы горячие внутренние стенки камеры сгорания смачивались жидким топливом равномерно с учетом направления действия центробежных сил, а в результате термомеханического взаимодействия струй жидкого топлива с горячими внутренними стенками камеры сгорания происходит фрагментация струй с образованием капель и пленок жидкого топлива, а также паров топлива, обеспечивающих формирование детонационно-способной двухфазной горючей смеси, заполняющей горелочный тракт, а принудительное зажигание горючей смеси приводит к образованию в горелочном тракте ускоряющегося турбулентного пламени и к быстрому переходу горения в детонацию, так что вся оставшаяся в горелочном тракте двухфазная горючая смесь сгорает в детонационной волне, бегущей по направлению к соплу, а после ее выхода из сопла происходит истечение продуктов детонации через сопло, сопровождающееся снижением давления в горелочном тракте до уровня давления торможения в набегающем потоке воздуха, обеспечивая тем самым условия для продувки горелочного тракта и его повторного заполнения детонационно-способной двухфазной смесью топлива и воздуха, а истекающие из сопла продукты детонации создают реактивную тягу. Предложенный способ реализован в устройстве, включающем воздухозаборник с обратным клапаном, камеру сгорания с источником зажигания, выходное устройство (сопло) и систему управления, в котором к воздухозаборнику присоединен горелочный тракт, включающий камеру сгорания с дозатором топлива и источником зажигания, а также детонационную трубу с препятствиями-турбулизаторами и сопло, установленное в выходном сечении детонационной трубы. Предложенное устройство обеспечивает положительную тягу в условиях полета с крейсерской скоростью (соответствует скорости набегающего потока воздуха около 70 м/с). 2 н. и 4 з.п. ф-лы, 5 ил.

Изобретение относится к способам и устройствам для определения относительной детонационной способности газообразных и жидких горючих материалов. Способ определения относительной детонационной способности газообразных и диспергированных конденсированных горючих материалов включает подачу горючей смеси, заполнение детонационной трубы горючей смесью, зажигание горючей смеси слабым источником энергии, ускорение пламени на турбулизирующих препятствиях с образованием ударной волны, бегущей перед ускоряющимся пламенем, очаговое самовоспламенение ударно-сжатой горючей смеси с последующим переходом горения в детонацию, регистрацию факта перехода горения в детонацию и оценку относительной детонационной способности по сравнению с эталонной горючей смесью, при этом компоненты горючей смеси могут подаваться раздельно в виде газов и/или диспергированных конденсированных горючих материалов и заполнять детонационную трубу, создавая в ней течение горючей смеси с заданными термодинамическими и газодинамическими параметрами, причем зажигание горючей смеси слабым источником энергии происходит циклически, а факт перехода горения в детонацию регистрируется в каждом цикле по времени перехода горения в детонацию, причем для обеспечения одинакового расстояния перехода горения в детонацию для различных горючих смесей используется явление фокусировки ударной волны, бегущей перед ускоряющимся пламенем, а относительная детонационная способность горючей смеси оценивается сравнением среднего времени перехода горения в детонацию, определенного по нескольким циклам, с таковым для эталонной горючей смеси, причем количество циклов должно быть достаточным для статистической достоверности получаемого результата. Техническим результатом является увеличение точности детонационной способности различных газообразных и диспергированных конденсированных горючих материалов. 2 н. и 9 з.п. ф-лы, 2 ил.

Изобретение относится к способам организации рабочего процесса в воздушно-реактивных двигателях с непрерывно-детонационным горением и устройствам для их осуществления, предназначенным, в частности, для высокоскоростных беспилотных летательных аппаратов. Способ организации рабочего процесса в прямоточном воздушно-реактивном двигателе с непрерывно-детонационным горением включает разгон летательного аппарата до сверхзвуковой скорости, обеспечивающей начало автономного полета летательного аппарата с таким двигателем, частичное торможение набегающего сверхзвукового воздушного потока в косых скачках уплотнения и в пристеночном пограничном слое перед поступлением в кольцевую камеру сгорания, непрерывную подачу топлива в зону смешения с воздухом, формирование детонационно-способной смеси топлива и воздуха. Далее инициируют непрерывно-детонационное горение топливной смеси, истечение продуктов детонации из кольцевой камеры сгорания через кольцевое сопло со сверхзвуковой скоростью с образованием реактивной струи и созданием реактивной тяги. Набегающий сверхзвуковой воздушный поток сначала частично тормозится в косых скачках уплотнения и в пристеночном пограничном слое, а затем ускоряется в веере волн разрежения с частичным восстановлением параметров набегающего сверхзвукового воздушного потока и поступает в прямоточный воздушно-реактивный двигатель в виде слабо заторможенного сверхзвукового воздушного потока. Одна часть воздуха направляется в кольцевую камеру сгорания. Другая часть, включающая пристеночный пограничный слой, направляется в обход кольцевой камеры сгорания, чтобы обеспечить охлаждение стенок кольцевой камеры сгорания и предотвратить газодинамическое влияние непрерывно-детонационного горения смеси топлива и воздуха в кольцевой камере сгорания на течение слабо заторможенного сверхзвукового воздушного потока на входе в прямоточный воздушно-реактивный двигатель. Способ реализован в устройстве, включающем сверхзвуковой воздухозаборник, центральное тело, кольцевую камеру сгорания с поясом форсунок подачи топлива, газодинамический изолятор, расположенный между кольцевой камерой сгорания и внешней стенкой заднего конуса центрального тела. Изобретение обеспечивает возможность осуществления автономного полета при низком числе Маха. 2 н. и 5 з.п. ф-лы, 2 ил.

Изобретение относится к силовым установкам летательных аппаратов различного назначения, работающим на твердом топливе (например, синтетическом полимере). Способ организации детонационного горения пиролизных газов в камере сгорания воздушно-реактивного двигателя, при котором для дросселирования реактивной тяги используется продувка реактора-пиролизера с гранулированным твердым топливом высокотемпературными или низкотемпературными газами из газогенератора. Сгорание смеси пиролизных газов с воздухом в камере сгорания происходит в детонационной волне, обеспечивающей поток тепла в реактор-пиролизер из камеры сгорания, достаточный для достижения требуемой скорости образования пиролизных газов на том или ином рабочем режиме, а также достаточный для надежного охлаждения элементов конструкции камеры сгорания за счет эндотермического пиролиза гранулированного твердого топлива. Способ реализован в устройстве, в котором реактор-пиролизер отделен от кольцевой камеры сгорания стенкой, выполненной из материала с высокой теплопроводностью. Внутри реактора-пиролизера расположен теплообменный каркас, выполненный из материала с высокой теплопроводностью и находящийся в тепловом контакте со стенкой, отделяющей реактор-пиролизер от кольцевой камеры сгорания. Гранулированное твердое топливо в реакторе-пиролизере находится в тепловом контакте как со стенкой, отделяющей реактор-пиролизер от кольцевой камеры сгорания, так и с элементами теплообменного каркаса. Изобретение обеспечивает получение продуктов пиролиза с фазовым и химическим составом, требуемым для самоподдерживающегося детонационного горения и надежного охлаждения элементов конструкции камеры сгорания. 2 н. и 1 з.п. ф-лы, 1 ил.

Изобретение относится к способу и устройству для опреснения воды. Способ опреснения соленой воды, в котором опресняемая соленая вода, подаваемая в виде струи или пелены, периодически подвергается воздействию сильной ударной волны и высокоскоростного потока горячих газообразных продуктов детонации, приводящему к тонкой аэродинамической фрагментации струи или пелены опресняемой соленой воды. А образованный двухфазный факел подается тангенциально в вихревую зону, где в условиях сильно закрученного высокотемпературного потока происходит быстрое испарение микрокапель опресняемой соленой воды с образованием мелкодисперсной кристаллической морской соли, отделяемой от газообразных продуктов детонации и водяного пара благодаря полю центробежных сил. Газообразные продукты детонации и водяной пар выводятся из вихревой зоны в зону конденсации водяного пара и отделения его от газообразных продуктов детонации. Причем солевой остаток непрерывно удаляется из вихревой зоны в виде мелкодисперсной кристаллической морской соли. Способ реализован в устройстве, в котором системы фрагментации и испарения опресняемой соленой воды выполнены в виде импульсного генератора сильной ударной волны и высокоскоростного потока горячих газообразных продуктов детонации, присоединенного к вихревому реактору для испарения микрокапель опресняемой соленой воды с образованием мелкодисперсной кристаллической морской соли, соединенному с конденсатором водяного пара. Конденсатор водяного пара снабжен системой удаления газообразных продуктов детонации и системой отвода опресненной воды потребителю. Изобретение обеспечивает опреснение соленой воды с помощью термомеханического воздействия на струю или пелену соленой воды сильной ударной волной и высокоскоростным потоком горячих газообразных продуктов детонации, получаемыми в циклическом рабочем процессе с импульсно-детонационным сжиганием того или иного горючего. 2 н.п. ф-лы, 1 ил., 1 пр.

Изобретение относится к способам и устройствам для получения сильно перегретого водяного пара. Способ получения сильно перегретого водяного пара из питательной воды за счет циклического детонационного сжигания горючей смеси, в котором водяной пар, предварительно получаемый из питательной воды, подвергается циклическому или непрерывному детонационному сжатию в случае, когда горючая смесь перемешана с водяным паром и находится внутри концентрационных пределов детонации, или циклическому ударному сжатию в случае, когда горючая смесь не перемешана с водяным паром, причем в обоих случаях часть тепловой энергии, выделяющейся при циклическом или непрерывном детонационном сжигании горючей смеси, расходуется на предварительное получение водяного пара из питательной воды с помощью теплопередачи. Предложенный способ реализован в устройстве, включающем камеру сгорания, системы подачи горючего и окислителя, систему зажигания и систему подачи питательной воды, в котором камера сгорания выполнена или в виде импульсно-детонационной трубы, или в виде непрерывно-детонационной камеры сгорания, снабженной системой охлаждения, а система подачи питательной воды включает приточный резервуар с датчиком температуры питательной воды и датчиком уровня питательной воды, причем приточный резервуар всегда частично заполнен питательной водой, а импульсно-детонационная труба или непрерывно-детонационная камера сгорания и подводящие магистрали систем подачи горючего и окислителя всегда погружены в эту питательную воду, а в верхней части приточного резервуара, всегда заполненной водяным паром, расположен паровой коллектор с клапаном, направляющий водяной пар во входное сечение импульсно-детонационной трубы или непрерывно-детонационной камеры сгорания. Изобретение направлено на формирование плотной и дальнобойной струи сильно перегретого водяного пара для переработки и утилизации твердых бытовых и других отходов по бескислородным технологиям. 3 н.п. ф-лы, 2 ил.

Изобретение относится к энергетическим установкам с импульсно-детонационным сжиганием ископаемых или синтетических горючих материалов, которые могут быть использованы, например, на электроэнергетических предприятиях или на промышленных предприятиях в составе различных технологических комплексов для получения электромеханической энергии, в том числе в арктических условиях. Предложен способ, в котором ударные волны и импульсные высокоскоростные струи продуктов детонации перед тем как направляться на традиционный турбонагнетатель сначала приводят во вращение массивный зубчатый маховик, а затем рассеиваются в промежуточном демпфирующем объеме, приводя к тому, что предписанные производителем предельно допустимые нагрузки на традиционный турбонагнетатель не превышаются, а высокотемпературные продукты детонации далее используются для получения тепловой, механической и электрической энергии с помощью известных газо- и паротурбинных энергетических установок. Предложенный способ реализован в предложенном устройстве, включающем импульсно-детонационную трубу, промежуточный демпфирующий объем, турбонагнетатель, системы подачи воздуха и горючего, систему зажигания и систему охлаждения, в котором к импульсно-детонационной трубе присоединены зубчатый маховик в герметичном корпусе и промежуточный демпфирующий объем, из которого высокотемпературные продукты детонации далее поступают на известные газо- и паротурбинные энергетические установки для получения тепловой, механической и электрической энергии. Изобретение обеспечивает получение электрической, механической и тепловой энергии при помощи ударных волн и высокоскоростных струй продуктов детонации, генерируемых с помощью импульсно-детонационного сжигания ископаемых или синтетических горючих, в энергетических установках с традиционными турбонагнетателями без превышения предельно допустимых нагрузок, предписанных производителем. 2 н. и 5 з.п. ф-лы, 5 ил.

Способ организации рабочего процесса в непрерывно-детонационной камере сгорания турбореактивного двигателя включает двухступенчатое преобразование химической энергии топлива в полезную механическую работу и в кинетическую энергию реактивной струи. При осуществлении способа инициируют одну или несколько самоподдерживающихся детонационных волн в кольцевой камере сгорания с последующим преобразованием химической энергии топлива частично в тепловую и частично в кинетическую энергию при его сжигании в непрерывно-детонационном режиме в кольцевой камере сгорания при повышенном среднем давлении, получаемом с помощью компрессора, а затем частично преобразуют тепловую и кинетическую энергии течения в механическую энергию с помощью турбины, передающей крутящий момент компрессору, а также другим вспомогательным агрегатам, и в кинетическую энергию реактивной струи с помощью реактивного сопла. Крутящий момент на турбине создают проникающими из камеры сгорания вверх по потоку одной или несколькими косыми ударными волнами, движущимися в следе одной или нескольких самоподдерживающихся детонационных волн, непрерывно циркулирующих в кольцевой камере сгорания, а горячие продукты непрерывно-детонационного горения направляют в окружающее пространство непосредственно через реактивное сопло. Турбореактивный двигатель для осуществления способа содержит входное устройство, компрессор, инициатор детонации, кольцевую камеру сгорания, турбину и выходное реактивное сопло. Турбина размещена вверх по потоку от кольцевой камеры сгорания, а выходное реактивное сопло установлено вниз по потоку от последней. Изобретения позволят повысить эффективность рабочего процесса в турбореактивном двигателе. 2 н. и 3 з.п. ф-лы, 10 ил.

Изобретение относится к способам и устройствам для воспламенения топлива и может быть использовано для зажигания скоростных потоков горючих смесей в различных технологических устройствах и энергетических установках, в частности в импульсно-детонационных двигателях летательных аппаратов

 


Наверх