Патенты автора Иванов Анатолий Александрович (RU)

Изобретение относится к области экспериментальной ядерной физики и может быть использовано для измерения мюонной компоненты широких атмосферных ливней (ШАЛ) космических лучей (КЛ), а также в других экспериментах, где измеряется поток мюонов в КЛ. Ледяной детектор мюонов регистрирует черенковское излучение от мюонов в объеме льда, при этом детектор использует лед со спектросмещающими добавками в качестве радиатора черенковского излучения. Технический результат – расширение области применения экспериментального оборудования с целью использования преимуществ холодного климата для решения задач фундаментальных исследований в области физики космических лучей высоких энергий. 1 ил.

Использование: для определения параметров полноразмерных кернов. Сущность изобретения заключается в том, что устройство для определения параметров полноразмерных кернов содержит корпус, представляющий собой несущий каркас; блок магнита и катушек, блок перемещения керна, блок электроники, прикрепленные к корпусу, при этом блок магнита и катушек выполнен в виде постоянного магнита по структуре Хальбаха с цилиндрическим зазором внутри него, причем в цилиндрическом зазоре постоянного магнита установлена градиентная катушка, образующая внутри своего корпуса цилиндрический зазор, причем в цилиндрическом зазоре градиентной катушки установлена радиочастотная катушка, образующая внутри своего корпуса цилиндрический зазор для прохождения сквозь него полноразмерного керна, блок электроники выполнен с возможностью управлять блоком перемещения керна так, чтобы обеспечивать перемещение керна сквозь блок магнита и катушек с заданной скоростью, и управлять блоком магнита и катушек так, чтобы формировать с помощью приемопередающей катушки и градиентной катушки сигнал ЯМР с заданными параметрами, принимать и обрабатывать отклик керна на это воздействие, определять параметры керна на основании отклика, причем градиентная катушка состоит из двух зеркально симметричных частей, каждая из которых представляет собой последовательное соединение двух полукруглых и четырех прямолинейных участков проводников, причем полукруглые участки проводников каждой части имеют радиус r, смещены друг относительно друга на расстояние 2*H и находятся в параллельных плоскостях, концы полукруглых участков соединены друг с другом посредством четырех прямолинейных участков проводников, проходящих через точку, находящуюся посередине между полукруглыми участками и удаленную от оси, соединяющей центры полукруглых участков, на расстояние R, причем части градиентной катушки соединены навстречу друг другу, отношение R/r равно по существу 12:7, а отношение H/R равно по существу 15:12. Технический результат: обеспечение возможности оперативного определения ЯМР-свойств образцов полноразмерного керна непосредственно на скважине без предварительной подготовки к исследованиям. 2 н. и 4 з.п. ф-лы, 4 ил.

Газотурбинная установка с впрыском водяного пара в контур ГТУ содержит компрессор для сжатия воздуха, топливный насос, средства для подачи топлива, камеру сгорания, газовую турбину, электрогенератор для выработки электроэнергии, механические средства для передачи механической энергии от турбины на работу компрессора и на вращение электрогенератора, котел-утилизатор. В камеру сгорания поступает сжатый компрессором воздух и подаваемое топливо и происходит их смешение, воспламенение и сгорание. Котел-утилизатор предназначен для нагрева подаваемой воды и получения пара за счет тепла продуктов сгорания, систему впрыска пара в камеру сгорания. Газотурбинная установка оснащена системой подачи активатора горения и системой смешения активатора горения с водяным паром, впрыскиваемым в камеру сгорания. Изобретение направлено на увеличение удельной мощности, повышение КПД, снижение удельного расхода топлива и увеличение (продление) ресурса, а также для снижения выбросов в атмосферу токсичных веществ, в частности оксидов азота (NOx) и угарного газа (CO) с продуктами сгорания. 1 ил.

Газотурбинная установка с подачей паро-топливной смеси содержит компрессор для сжатия воздуха, топливный насос для подачи топлива, средства для подачи паро-топливной смеси, камеру сгорания, газовую турбину, электрогенератор для выработки электроэнергии, механические средства для передачи механической энергии от турбины на работу компрессора и на вращение электрогенератора, котел-утилизатор. В камеру сгорания поступает сжатый компрессором воздух и подаваемая паро-топливная смесь, далее происходит их смешение, воспламенение и сгорание. Котел-утилизатор предназначен для нагрева подаваемой воды и получения пара за счет тепла продуктов сгорания, смеситель для получения паро-топливной смеси. Газотурбинная установка оснащена системой подачи активатора горения и системой смешения активатора горения с паро-топливной смесью, подаваемой в камеру сгорания. Изобретение направлено на увеличение удельной мощности, повышение КПД, снижение удельного расхода топлива и увеличение (продление) ресурса, а также для снижения выбросов токсичных веществ, в частности оксидов азота (NOx) и угарного газа (CO) с продуктами сгорания, в атмосферу. 2 ил.

Изобретение относится к энергетике. Газотурбинная установка (ГТУ) с впрыском жидкости в контур ГТУ оснащена системой подачи и смешения активатора горения с жидкостью, подаваемой в контур ГТУ. Активатор горения представляет собой вещество, которое при повышенных температурах легко диссоциирует с образованием гидроксильных радикалов, что ускоряет сгорание топлива и продуктов его высокотемпературных превращений. Также представлена Газотурбинная установка с впрыском жидкости в контур ГТУ, содержащая двухступенчатый компрессор, перегреватель смеси жидкости и активатора горения, а также котел-утилизатор теплоты продуктов сгорания. Изобретение позволяет увеличить подачу в камеру сгорания мелкодисперсной влаги, благодаря чему удается повысить КПД и удельную мощность, уменьшить удельный расход топлива, увеличить ресурс за счет снижения температурных градиентов в контуре ГТУ и одновременно понизить в выбросах содержание СО и оксидов азота. 2 н.п. ф-лы, 2 ил.

Изобретение относится к области создания детекторов инфракрасного излучения и касается болометрического ИК-детектора. Детектор состоит из мембраны площадью S с термочувствительным элементом (ТЧЭ) и поглотителем электромагнитной энергии (ПЭЭ), прикрепленной к подложке с помощью токопроводящих шинок. Функции (ТЧЭ) и (ПЭЭ) объединены в одном элементе, который выполнен в виде 2N периодических решеток, ориентированных взаимно перпендикулярно друг к другу. Решетки состоят из n тонкопленочных монокристальных полосок, изготовленных из Bi1-xSbx (0<x<12), и представляют собой n фазированных антенн с периодом L=λ/2. Параметры болометра удовлетворяют следующим соотношениям: Δλ≤(λ/n+λR0/2Z), τ<20a×b/χ, R0/2Z<0,5, где Δλ - интервал регистрируемых длин волн на основной длине волны λ, Z=120π Ом - импеданс свободного пространства, χ - температуропроводность среды, непосредственно контактирующей с мембраной, а - ширина, b - длина полосок, Ro - сопротивление квадратного участка поверхности полоски, τ - время выхода на стационарное состояние при воздействии прямоугольного импульса электромагнитной энергии. Технический результат заключается в повышении быстродействия устройства. 1 ил.

Изобретение относится к области создания детекторов инфракрасного излучения и касается болометрического ИК-детектора. Детектор состоит из мембраны площадью S с термочувствительным элементом (ТЧЭ) и поглотителем электромагнитной энергии (ПЭЭ), прикрепленной к подложке с помощью токопроводящих шинок. ТЧЭ и ПЭЭ объединены в одном элементе, который выполнен в виде покрытия из тонкопленочного монокристального материала Bi1-xSbx (0<x<12). Покрытие максимально покрывает поверхность мембраны и включает полоску, которая отделена зазорами шириной l от остальной части покрытия за исключением концов полоски, соединенных с остальной частью покрытия. Кроме того, покрытие разделено щелью на две части, электрически соединенные указанной полоской. Параметры болометра удовлетворяют следующим соотношениям: R/2Z<1, где R - удельное поверхностное сопротивление пленки, Z=120π Ом - импеданс свободного пространства; S/χ1>l2/χ2, где χ1 - температуропроводность среды, непосредственно контактирующей с мембраной, χ2 - температуропроводность материала мембраны. Технический результат заключается в упрощении конструкции и повышении удельной обнаружительной способности устройства. 1 ил.

Изобретение относится к измерительной технике и может быть использовано для измерения величины потока импульсного излучения в СВЧ и миллиметровом диапазонах

 


Наверх